The Magnetic Universe : Geophysical and Astrophysical Magnetodynamics and Dynamo Theory (2004. XI, 332 p. 24 cm)

個数:

The Magnetic Universe : Geophysical and Astrophysical Magnetodynamics and Dynamo Theory (2004. XI, 332 p. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 商品コード 9783527404094

Full Description


Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial in the formation of the stars, and discuss promising experiments currently being designed to study some of the relevant physics in the laboratory. This interdisciplinary approach makes the book appealing to a wide audience in physics, astrophysics and geophysics.

Contents

Preface.1 Introduction.2 Earth and Planets.2.1 Observational Overview.2.1.1 Reversals.2.1.2 Other Time-Variability.2.2 Basic Equations and Parameters.2.2.1 Anelastic and Boussinesq Equations.2.2.2 Nondimensionalization.2.3 Magnetoconvection.2.3.1 Rotationor Magnetism Alone.2.3.2 Rotation and Magnetism Together.2.3.3 Weakversus Strong Fields.2.3.4 Oscillatory Convection Modes.2.4 Taylor's Constraint.2.4.1 Taylor's Original Analysis.2.4.2 Relaxation of Ro=E=0.2.4.3 Taylor States versus Ekman States.2.4.4 From Ekman States to Taylor States.2.4.5 Torsional Oscillations.2.4.6 alpha -Dynamos.2.4.7 Taylor's Constraint in the Anelastic Approximation.2.5 Hydromagnetic Waves.2.6 The Inner Core.2.6.1 Stewartson Layers on C.2.6.2 Nonaxisymmetric Shear Layers on C.2.6.3 Finite Conductivity of the Inner Core.2.6.4 Rotation of the Inner Core.2.7 Numerical Simulations.2.8 Magnetic Instabilities.2.9 Other Planets.2.9.1 Mercury, Venus and Mars.2.9.2 Jupiter's Moons.2.9.3 Jupiter and Saturn.2.9.4 Uranus and Neptune.3 Differential Rotation Theory.3.1 The Solar Rotation.3.1.1 Torsional Oscillations.3.1.2 Meridional Flow.3.1.3 Ward's Correlation.3.1.4 Stellar Observations.3.2 Angular Momentum Transport in Convection Zones.3.2.1 The Taylor Number Puzzle.3.2.2 The LAMBDA-Effect.3.2.3 The Eddy Viscosity Tensor.3.2.4 Mean-Field Thermodynamics.3.3 Differential Rotation and Meridional Circulation for Solar-Type Stars.3.4 Kinetic Helicity and the DIV-CURL-Correlation.3.5 Overshoot Region and the Tachocline.3.5.1 The NIRVANA Code.3.5.2 Penetration into the Stable Layer.3.5.3 A Magnetic Theory of the Solar Tachocline.4 The Stellar Dynamo.4.1 The Solar-Stellar Connection.4.1.1 The Phase Relation.4.1.2 The Nonlinear Cycle.4.1.3 Parity.4.1.4 Dynamo-related Stellar Observations.4.1.5 The Flip-Flop Phenomenon.4.1.6 More Cyclicities.4.2 The alpha-Tensor.4.2.1 The Magnetic-Field Advection.4.2.2 The Highly Anisotropic alpha-Effect.4.2.3 The Magnetic Quenching of the alpha-Effect.4.2.4 Weak-Compressible Turbulence.4.3 Magnetic-Diffusivity Tensor and eta-Quenching.4.3.1 The Eddy Diffusivity Tensor.4.3.2 Sunspot Decay.4.4 Mean-Field Stellar Dynamo Models.4.4.1 The alpha2-Dynamo.4.4.2 The alpha -Dynamo for Slow Rotation.4.4.3 Meridional Flow Influence.4.5 The Solar Dynamo.4.5.1 The Overshoot Dynamo.4.5.2 The Advection-Dominated Dynamo.4.6 Dynamos with Random alpha.4.6.1 Aturbulence Model.4.6.2 Dynamo Models with Fluctuating alpha-Effect.4.7 Nonlinear Dynamo Models.4.7.1 Malkus-Proctor Mechanism.4.7.2 alpha-Quenching.4.7.3 Magnetic Saturation by Turbulent Pumping.4.7.4 eta-Quenching.4.8 LAMBDA-Quenching and Maunder Minimum.5 The Magnetorotational Instability (MRI).5.1 Star Formation.5.1.1 Molecular Clouds.5.1.2 The Angular Momentum Problem.5.1.3 Turbulence and Planet Formation.5.2 Stability of Differential Rotation in Hydrodynamics.5.2.1 Combined Stability Conditions.5.2.2 Sufficient Condition for Stability.5.2.3 Numerical Simulations.5.2.4 Vertical Shear.5.3 Stability of Differential Rotation in Hydromagnetics.5.3.1 Ideal MHD.5.3.2 Baroclinic Instability.5.4 Stability of Differential Rotation with Strong Hall Effect.5.4.1 Criteria of Instability of Protostellar Disks.5.4.2 Growth Rates.5.5 Global Models.5.5.1 A Spherical Model with Shear.5.5.2 A Global Disk Model.5.6 MRI of Differential Stellar Rotation.5.6.1 T Tauri Stars (TTS).5.6.2 The Ap-Star Magnetism.5.6.3 Decay of Differential Rotation.5.7 Circulation-Driven Stellar Dynamos.5.7.1 The Gailitis Dynamo.5.7.2 Meridional Circulation plus Shear.5.8 MRI in Kepler Disks.5.8.1 The Shearing Box Model.5.8.2 A Global Disk Dynamo?5.9 Accretion-Disk Dynamo and Jet-Launching Theory.5.9.1 Accretion-Disk Dynamo Models.5.9.2 Jet-Launching.5.9.3 Accretion-Disk Outflows.5.9.4 Disk-Dynamo Interaction.6 The Galactic Dynamo.6.1 Magnetic Fields of Galaxies.6.1.1 Field Strength.6.1.2 Pitch Angles.6.1.3 Axisymmetry.6.1.4 Two Exceptions: Magnetic Torus and Vertical Halo Fields.6.1.5 The Disk Geometry.6.2 Nonlinear Winding and the Seed Field Problem.6.2.1 Uniform Initial Field.6.2.2 Seed Field Amplitude and Geometry.6.3 Interstellar Turbulence.6.3.1 The Advection Problem.6.3.2 Hydrostatic Equilibrium and Interstellar Turbulence.6.4 From Spheres to Disks.6.4.1 1DdynamoWaves.6.4.2 Oscillatory vs. Steady Solutions.6.5 Linear 3DModels.6.6 The Nonlinear Galactic Dynamo with Uniform Density.6.6.1 The Model.6.6.2 The Influences of Geometry and Turbulence Field.6.7 Density Wave Theory and Swing Excitation.6.7.1 Density Wav Theory.6.7.2 The Short-Wave Approximation.6.7.3 Swing Excitation in Magnetic Spirals.6.7.4 Nonlocal Density Wave Theory in Kepler Disks.6.8 Mean-Field Dynamos with Strong Halo Turbulence.6.8.1 Nonlinear 2D Dynamo Model with Magnetic Supported Vertical Stratification.6.8.2 Nonlinear 3D Dynamo Models for Spiral Galaxies.6.9 New Simulations: Macroscale and Microscale.6.9.1 Particle-Hydrodynamics for the Macroscale.6.9.2 MHD for the Microscale.6.10 MRI in Galaxies.7 Neutron Star Magnetism.7.1 Introduction.7.2 Equations.7.3 Without Stratification.7.4 With Stratification.7.5 Magnetic-Dominated Heat Transport.7.6 White Dwarfs.8 The Magnetic Taylor-Couette Flow.8.1 History.8.2 The Equations.8.3 Results without Hall Effect.8.3.1 Subcritical Excitation for Large Pm.8.3.2 The Rayleigh Line (a = 0) and Beyond.8.3.3 Excitation of Nonaxisymmetric or Oscillatory Modes.8.3.4 Wave Number and Drift Frequencies.8.4 Results with Hall Effect.8.4.1 Hall Effect with Positive Shear.8.4.2 Hall Effect with Negative Shear.8.4.3 A Hall-Driven Disk-Dynamo?8.5 Endplate effects.8.6 Water Experiments.8.7 Taylor-Couette Flow as Kinematic Dynamo.9 Bibliography.Index.