Renewable Energy in the Process Industry (1. Auflage. 2026. 624 S. 93 Tabellen. 244 mm)

個数:
  • 予約
  • ポイントキャンペーン

Renewable Energy in the Process Industry (1. Auflage. 2026. 624 S. 93 Tabellen. 244 mm)

  • ウェブストア価格 ¥46,842(本体¥42,584)
  • WILEY-VCH(2026/03発売)
  • 外貨定価 EUR 179.00
  • クリスマスポイント2倍キャンペーン(~12/25)
  • ポイント 850pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527354467

Full Description

Thorough discussion on renewable energies and their implementation into the process industry, emphasizing efficiency and demand of industrial processes

Renewable Energy in the Process Industry provides an overview of the challenges associated with the generation and storage of renewable energy, moving from a broad perspective to a zoomed-in look at a variety of different industries. The introductory chapter sets the current energy scene and its use in different countries. An outline is given for the electricity mix, how power generation is controlled, and why it may lead to on-demand power reduction. This outline is followed by a discussion of the technical aspects on generating renewable energy as well as energy storage with respect to efficiencies and important factors in the decision-making process.

Renewable Energy in the Process Industry includes information on:

Requirements for renewable energy in the process industry, such as stronger grid connections, extension of the grid together with its stability, and better communication between operators
Possible intermittency/interruptions in the heat supply that can arise when renewable energy is used
Electrification of the process industry to reduce emissions
Implementation of renewable energies in a variety of different industries, ranging from steel and cement manufacturing to pharmaceuticals and wastewater treatment, with flowsheets and operating conditions

Renewable Energy in the Process Industry is a timely, forward-thinking resource for process, chemical, and pharmaceutical engineers, bioengineers, and engineers involved in power technology.

Contents

About the Authors xiii

Preface xv

Nomenclature xvii

1 Setting the Energy Scene 1

1.1 Introduction 1

1.2 Energy Carriers 5

1.2.1 Solar Energy 5

1.2.2 Wind Energy 6

1.2.3 Hydropower 7

1.2.4 Chemical Energy Carriers 8

1.2.5 Nuclear Energy 11

1.3 Current Usage of Energy Carriers 12

1.3.1 Interconversion of Energy Carriers 14

1.4 Outlook 17

References 21

2 Power Generation - Harnessing Renewable Energy 25

2.1 Introduction 25

2.2 Thermal Power Generation Processes 28

2.2.1 Rankine Cycle 28

2.2.2 Brayton Cycle 31

2.2.3 Environmental Aspects 33

2.2.3.1 Carbon Capture 34

2.2.3.2 Desulphurisation 37

2.2.3.3 DeNOx 38

2.3 Power Generation from Geothermal Energy 39

2.3.1 Principle 39

2.3.2 Efficiency 40

2.3.3 Installations 41

2.3.4 Environmental Aspects of Geothermal Power 41

2.4 Hydropower 42

2.4.1 Principle 42

2.4.2 Efficiency 43

2.4.3 Installations 45

2.4.4 Environmental Aspects of Hydropower 46

2.5 Wind Energy 46

2.5.1 Principle 47

2.5.2 Efficiency 47

2.5.2.1 Efficiency of a Wind Park 50

2.5.3 Installations 51

2.5.4 Environmental Aspects of Harnessing Wind Energy 52

2.6 Solar Power 53

2.6.1 PhotoVoltaics 54

2.6.1.1 Principle 54

2.6.1.2 Efficiency of Converting Solar Light into Power 56

2.6.1.3 Installations 59

2.6.2 Concentrated Solar Power (CSP) 60

2.6.2.1 Principle 60

2.6.2.2 Efficiency of Converting Solar Light into Heat 64

2.6.2.3 Installations 66

2.6.3 Environmental Aspects of Harnessing Solar Energy Using PV or CSP 68

2.7 The Grid 69

2.8 Outlook 71

References 74

3 Dealing with Intermittency - Storing Electric Power 85

3.1 Introduction 85

3.2 Pumped Hydro-Energy Storage (PHES) 86

3.3 Compressed Air Energy Storage (CAES) 88

3.3.1 Liquid Air Energy Storage (LAES) 93

3.4 Flywheel 94

3.5 Batteries 95

3.5.1 Principle 95

3.5.2 Lead-Acid Battery 100

3.5.3 Lithium-Ion Batteries 105

3.5.4 Alternatives to LiCoO2 108

3.5.5 Solid-State Batteries 111

3.6 Flow Batteries 111

3.6.1 Electrolytes 113

3.6.2 Membranes 116

3.6.3 Electrodes 117

3.6.4 Design Considerations for Flow Batteries 118

3.7 Supercapacitors 119

3.8 Outlook 121

References 126

4 Heating 135

4.1 Introduction 135

4.2 Heat Pumps 139

4.2.1 Chemical Heat Pump 145

4.3 Resistive Heaters 146

4.4 Furnaces 151

4.4.1 Combustion Furnace 152

4.4.2 Electric furnace 162

4.4.2.1 Resistive Furnace 162

4.4.2.2 Microwave Furnace 163

4.4.2.3 Induction Furnace 167

4.4.2.4 Electric Arc Furnace (EAF) 169

4.5 Heat Integration 170

4.5.1 Pinch Analysis 171

4.5.2 The Future of Heat Integration 173

4.6 Heat Storage 174

4.7 Outlook 177

References 178

5 Chemical Storage of Energy 189

5.1 Power-to-X Concept 189

5.2 Hydrogen as an Energy Carrier 190

5.2.1 Hydrogen Production 191

5.2.1.1 Coal Gasification 193

5.2.1.2 Methane Reforming 200

5.2.1.3 Water Electrolysis 205

5.2.1.4 Hydrogen from PhotocatalyticWater Splitting 214

5.2.2 Efficiency of Hydrogen Production 216

5.2.3 Cost of Hydrogen Production 223

5.2.4 Hydrogen Storage and Transport 227

5.2.4.1 Hydrogen Transport Through Pipelines 229

5.2.4.2 Liquefying Hydrogen 230

5.2.4.3 Need for Hydrogen Carriers 232

5.2.5 Extracting Energy from Hydrogen 233

5.2.5.1 Hydrogen Combustion 233

5.2.5.2 Fuel Cells 233

5.3 Ammonia 236

5.3.1 Uses for Ammonia 236

5.3.2 Ammonia as a Hydrogen Carrier 237

5.3.3 Ammonia Production Process 238

5.3.3.1 Thermodynamic Limitations of Ammonia Synthesis 238

5.3.3.2 Catalysts for Ammonia Synthesis 239

5.3.4 Classical Ammonia Synthesis Route 240

5.3.4.1 CO2 Emissions 244

5.3.5 Efficiency of Ammonia Synthesis 244

5.3.6 Alternative Routes for Ammonia Synthesis 245

5.3.6.1 Production of Ammonia Using Renewable Hydrogen 246

5.3.6.2 CO2 Emissions from Renewable Ammonia Production 248

5.3.6.3 Energy Requirement for Production of Renewable Ammonia 248

5.3.7 Power from Ammonia 249

5.3.7.1 Energy Recovery Through Ammonia Combustion 249

5.3.7.2 Electrochemical Combustion of Ammonia 253

5.3.7.3 Conversion of Ammonia Back to Hydrogen 253

5.3.7.4 Efficiency Ammonia as a Hydrogen/Energy Carrier 255

5.4 Liquid Organic Hydrogen Carriers - LOHCs 257

5.4.1 Methylcyclohexane- Toluene-Hydrogen 258

5.4.2 Dibenzyl Toluene to Perhydro-Dibenzyl Ttoluene 261

5.4.2.1 Catalysts and Reaction Conditions 262

5.5 Methanol and Dimethyl Ether 264

5.5.1 Uses of Methanol and Dimethyl Ether 265

5.5.2 Methanol Synthesis Reactions and Equilibrium 266

5.5.3 Methanol Synthesis Catalyst 267

5.5.3.1 Methanol Production 268

5.5.4 Methanol from CO2 269

5.5.5 Methanol from Renewable Hydrogen 270

5.5.6 Dimethyl Ether Production 271

5.5.7 Uses of Methanol and Dimethyl Ether 271

5.5.7.1 Methanol/Dimethyl Ether Combustion 271

5.5.7.2 Direct Methanol Fuel Cell (DMFC) 272

5.5.7.3 Methanol/Dimethyl Ether as Feedstock for Fuel Production 273

5.5.7.4 Conversion of Methanol/Dimethyl Ether back to Hydrogen 273

5.6 Hydrocarbons to Store Energy 274

5.6.1 Fischer-Tropsch Synthesis 275

5.6.1.1 FT catalysts 276

5.6.1.2 Reactions in the Fischer-Tropsch Synthesis 277

5.6.1.3 FT Reaction Kinetics 278

5.6.1.4 Product Distribution in the Fischer-Tropsch Synthesis 279

5.6.1.5 Process and Reactor Considerations 282

5.6.2 CO2-Hydrogenation 282

5.6.2.1 Limitations in the Direct CO2-Hydrogenation to Hydrocarbons 283

5.6.3 FT Process Cost and Efficiency 284

5.7 Outlook 285

References 289

6 Basic Industries 305

6.1 Introduction to the Basic Industries 305

6.2 Cement 307

6.2.1 Material Specification for Cement and Concrete 307

6.2.2 Industry Size 308

6.2.3 Production of Cement 310

6.2.3.1 Process Description 310

6.2.3.2 Energy Demand in the Production of Cement 313

6.2.3.3 CO2 Production in Cement Manufacture 314

6.2.4 Reducing CO2 Emissions from Cement/Concrete 316

6.2.5 Current Research Around Future Processes 317

6.2.5.1 Making Cement More Sustainable 318

6.2.5.2 Cement Replacements 319

6.2.5.3 Calcium Looping 320

6.2.5.4 Oxy-fuel 320

6.2.5.5 Potential Additional Systems for CO2 Capture 320

6.2.5.6 Using Alternative Fuels 322

6.2.6 Outlook 324

6.3 Steel 325

6.3.1 Material Specification 325

6.3.2 Iron and Steel Industry 330

6.3.3 Current Process(es) 333

6.3.3.1 Overall Process 333

6.3.3.2 Coke Production 334

6.3.3.3 Iron Production - The Blast Furnace 334

6.3.3.4 Basic Oxygen Steel-Making 341

6.3.3.5 Electric Arc Furnace 343

6.3.4 Reducing Emissions in Steel Manufacturing 344

6.3.4.1 Potential for Recycle 344

6.3.4.2 Alternative Reductants 344

6.3.4.3 High-Temperature Heat 346

6.3.4.4 Carbon Capture and Utilisation 347

6.3.5 Outlook 347

6.4 Sulphuric Acid 349

6.4.1 Material Specifications 349

6.4.2 Size and Production Scale in Sulphuric Acid Production 349

6.4.3 Sulphuric Acid Production Process 350

6.4.4 Making Production of Sulphuric Acid More Sustainable 354

6.4.4.1 Regeneration of Spent AcidWaste 356

6.4.5 Outlook 357

6.5 Sodium Hydroxide and Hydrochloric Acid - The Chlor-Alkali Process 358

6.5.1 Introduction to Material and Industry 358

6.5.2 The Chlor-Alkali Process 359

6.5.2.1 Raw Materials 361

6.5.2.2 Process Flow Diagram 361

6.5.2.3 The Diaphragm Cell 361

6.5.2.4 The Mercury Cell 364

6.5.2.5 The Membrane Cell 365

6.5.2.6 Oxygen-Depolarised Cathode (ODC) Cell 366

6.5.3 Outlook 366

6.6 General Outlook for the Basic Industries 367

References 369

7 Manufacture of Materials 385

7.1 Introduction 385

7.2 Aluminium 387

7.2.1 Material Specification 388

7.2.2 Aluminium Industry 389

7.2.3 Current Process 391

7.2.3.1 Bayer Process - Alumina Production 391

7.2.3.2 Hall-Héroult Process - Aluminium Production 394

7.2.4 Recycling Aluminium 396

7.2.5 More Sustainable Aluminium Production 396

7.2.6 Outlook 397

7.3 Copper 398

7.3.1 Material Specification 398

7.3.2 Copper Industry 399

7.3.3 Current Processes 400

7.3.3.1 The Pyrometallurgical Route 401

7.3.3.2 The Hydrometallurgical Route 403

7.3.4 Potential for Recycle 404

7.3.5 Carbon Emissions from Copper Production 406

7.3.6 Copper Production Using Renewable Energy 407

7.3.7 Current Research Around Future Processes 409

7.3.8 Outlook 409

7.4 Titanium and Titania 410

7.4.1 Titanium Industry 411

7.4.2 Current Processes 412

7.4.2.1 Production of Pigment-Grade Titania 412

7.4.2.2 Production of Titanium Using the Kroll Process 415

7.4.3 Recycle 416

7.4.4 Implementation of Renewable Energy in the Production of Titania/Titanium 416

7.4.5 Future Processes to Produce Titania and Titanium 417

7.4.6 Outlook 418

7.5 Silicon 418

7.5.1 Material Specifications 419

7.5.2 Silicon Industry 420

7.5.3 Current Processes 422

7.5.3.1 Production of Metallurgical-Grade Silicon and Ferrosilicon 423

7.5.3.2 Production of Polycrystalline Silicon 425

7.5.3.3 Silicon as a Feedstock for the Chemical Industry 428

7.5.4 Direct Greenhouse Gas Emissions from the Production of Silicon 429

7.5.5 Potential for Recycle 431

7.5.6 Making Silicon Production More Sustainable 431

7.5.7 Current Research Around Future Processes 432

7.5.8 Outlook 433

7.6 Glass 434

7.6.1 Introduction to Glass and Its Industry 435

7.6.2 Current Process 437

7.6.3 Energy Requirement and Carbon Emissions 441

7.6.4 Potential for Recycle 442

7.6.5 Making Glass Manufacture More Sustainable 443

7.6.6 Current Research Around Future Processes 444

7.6.7 Outlook 445

7.7 Paper and Pulp Manufacturing 446

7.7.1 Introduction to Paper and Pulp and Its Industry 446

7.7.2 Current Processes 449

7.7.3 Energy Usage and Generation 454

7.7.4 Water Usage 455

7.7.5 Emissions 455

7.7.6 Making the Pulp and Paper Industry More Sustainable 457

7.7.7 Current Research Around Future Processes 457

7.7.8 Outlook for the Paper and Pulp Industry 458

7.8 Outlook for Industrial Manufacture of Materials 459

References 463

8 Consumer Goods Industries 483

8.1 Overview of Consumer Goods Industries 483

8.2 Industrial Baking 486

8.2.1 Introduction 486

8.2.1.1 Industry Size 487

8.2.2 Raw Materials and Process Steps 489

8.2.3 Carbon Footprint of Breadmaking 492

8.2.4 Renewable Energy in Breadmaking 494

8.2.5 Current Research Around Future Processes 495

8.2.6 Outlook 495

8.3 Canning and Related Processes 496

8.3.1 Current Processes 498

8.3.1.1 Overall Process 498

8.3.1.2 Retorting - A Batch Process 499

8.3.1.3 Pasteurising - A Continuous Process 501

8.3.2 Implementation of Renewable Energy in Thermal Food Processing 502

8.3.3 Recycling of Packaging Materials 503

8.3.4 Outlook 504

8.4 Pharmaceutical Drugs 504

8.4.1 Current Process 505

8.4.2 Energy Consumption in the Pharmaceutical Industry 508

8.4.2.1 Research and Development 509

8.4.3 Life Cycle Analysis of the Pharmaceutical Industry 510

8.4.4 Making the Pharmaceutical Industry More Sustainable 512

8.4.4.1 Green Chemistry 512

8.4.4.2 Continuous Processing 513

8.4.4.3 Potential for Recycle 514

8.4.4.4 Solar Thermal Systems 515

8.4.5 Current Research Around Future Processes 515

8.4.6 Outlook for the Manufacture of Pharmaceutical Drugs 515

8.5 Wastewater Treatment 516

8.5.1 Wastewater Treatment 518

8.5.2 Sewage Sludge 522

8.5.2.1 Combustion and Incineration 524

8.5.2.2 Pyrolysis 524

8.5.2.3 Anaerobic Digestion 524

8.5.2.4 Wastewater and Sludge to Fertiliser and Irrigation 525

8.5.2.5 Energy Generation from Sludge 526

8.5.3 Outlook 529

8.6 Outlook for Energy in the Consumer Goods Industry 529

References 530

9 General Outlook 543

9.1 Drivers to Reduce Greenhouse Gas Emissions 544

9.2 Accounting for Greenhouse Gas Emissions 548

9.3 Electrification 551

9.4 Alternative Fuels 555

9.5 Carbon Capture and Storage 557

9.6 New Opportunities 560

9.7 Concluding Remarks 562

References 563

Index 569

最近チェックした商品