- ホーム
- > 洋書
- > ドイツ書
- > Mathematics, Sciences & Technology
- > Chemistry
Full Description
Practical approach to solution-based synthesis methods and mechanisms from a chemical engineering perspectives
Engineering Nanoparticles for Biomedical Applications provides an in-depth, hands-on overview of synthesis and formation mechanisms, characterization, and functionalization of nanoparticles (NPs) using solution-based methods developed from fundamental principles of nucleation and growth. Various experimental synthesis strategies are supported via simulation and modeling. The NPs studied in this book are designed to target an array of biomedical applications.
In this book, readers can practice reverse engineering by first choosing a specific biomedical application, upon which the reader will be exposed to a host of synthesis options. Based on desired properties of NPs, this book can then provide all the relevant information using modeling approaches for that specific biomedical application.
Sample topics covered in Engineering Nanoparticles for Biomedical Applications include:
Physico-chemical properties of NPs such as magnetic, plasmonic, and stimuli-sensitivity properties
Modeling approaches including Density Functional Theory (DFT), Molecular Dynamics (MD), Monte Carlo simulations, and Population Balance Model
Applications of NPs with emphasis on biomedical applications such as biosensing, diagnostics/imaging, and drug delivery
Optical, magnetic, thermal, electrochemical, and biological properties of multifunctional nanoparticles
Iron oxides in spherical magnetic NPs, detailing co-precipitation, thermal decomposition, and colloidal templating synthesis methods
Engineering Nanoparticles for Biomedical Applications is an essential reference on the subject for chemists and engineers at every level of academia and industry.
Contents
Preface xvii
Section I Synthesis and Characterization of
Nanoparticles 1
1 Nucleation and Growth of Nanoparticles 3
Sulalit Bandyopadhyay and Seniz Ucar
1.1 Classical Nucleation Theory 4
1.2 Phase Stability and Phase Transformations 6
1.3 Crystal Growth 7
1.4 Control of Particle Size and Morphology 9
1.4.1 Control of Size and Size Distribution of Spherical NPs 9
1.4.1.1 Example 1: Spherical Iron Oxide NPs 11
1.4.1.2 Example 2: Spherical Au NPs 12
1.4.1.3 Example 3: Spherical Polymeric NPs 13
1.4.2 Control of Morphology of NPs 14
1.4.2.1 Example 1: Anisotropic Iron Oxide NPs 16
1.4.2.2 Example 2: Anisotropic Au NPs 17
1.5 Concluding Remarks 18
References 19
2 Characterization of Nanoparticles 23
Hammad Farooq and Haroon Zafar
2.1 Introduction 23
2.2 X-ray Diffraction (XRD) 24
2.3 Dynamic Light Scattering (DLS) 27
2.4 Nanoparticle Tracking Analysis (NTA) 29
2.5 Analytical Centrifuge (LUMiSizer) 33
2.6 Scanning Transmission Electron Microscopy (STEM) 36
2.7 Atomic Force Microscopy (AFM) 38
2.8 Fourier Transform Infrared (FT-IR) Spectroscopy 40
2.9 Raman Spectroscopy 41
2.10 Vibrating Sample Magnetometer 44
2.11 UV-Vis Spectroscopy 45
2.12 Selecting a Characterization Technique 47
References 48
3 Spherical Magnetic Nanoparticles 53
3.1 Magnetic Susceptibility 53
3.2 Magnetic Single-Domain Nanoparticles 56
3.3 Magnetic Anisotropy 57
3.4 Magnetic Interparticle Interactions 57
3.4.1 Exchange Interaction 57
3.4.2 Dipolar Interaction 58
3.4.3 RKKY Interaction 58
3.5 Characterizations of Magnetic Properties 59
3.5.1 Vibrating Sample Magnetometery (VSM) 59
3.5.2 Superconducting Quantum Interference Device (SQUID) 59
3.5.3 Magnetic Particle Spectroscopy 60
3.5.4 AC Susceptometry (ACS) 60
3.6 Iron Oxides 61
3.7 Synthesis Methods 62
3.7.1 Co-precipitation 62
3.7.2 Thermal Decomposition 66
3.7.3 Colloidal Templating 68
3.7.4 Other Methods 68
References 72
4 Anisotropic Magnetic Nanoparticles 77
Kingsley Poon, Jyotish Kumar, Janardhanan Saraswathy, Yogambha Ramaswamy, and Gurvinder Singh
4.1 Introduction 77
4.2 Synthesis of Anisotropic Magnetic Nanoparticles 78
4.2.1 Thermal Decomposition 79
4.2.2 Co-precipitation 83
4.2.3 Hydrothermal 83
4.3 Magnetic Properties of Anisotropic Nanoparticles 85
4.4 Biomedical Applications of Anisotropic Magnetic Nanoparticles 88
4.4.1 Anisotropic Magnetic Nanoparticles for MRI Contrast Agent 88
4.4.2 Anisotropic Magnetic Nanoparticles for Magnetic Hyperthermia 92
4.5 Summary 96
References 97
5 Size Selective Synthesis of Spherical Gold Nanoparticles 101
Avijit Mondal and Nikhil R. Jana
5.1 Introduction 101
5.2 Formation Mechanism of Au NP via Colloid Chemistry Approach 102
5.2.1 Au NP of 1-5nm Size Using Strong Capping Ligands 105
5.2.2 Au NP in the Size Range of 5-200nm via Seeding Growth 106
5.2.3 Au NP of 5-100nm by Controlling Nucleation-Growth Kinetics 110
5.2.4 Au NPs in the Size Range of 1-15 nm via Ostwald/Digestive Ripening Approach 113
5.3 Controlling Au NP Size Distribution 114
5.4 Conclusions and Future Aspect 115
References 116
6 Anisotropic Plasmonic Nanostructures 125
Neethu Thomas and Soumodeep Biswas
6.1 Introduction 125
6.2 Optical Properties of Plasmonic Nanostructures 126
6.2.1 Theory of Surface Plasmon Resonance 126
6.2.2 LSPR Through Mie and Mie-Gans Theory 127
6.2.3 Tuning of LSPR Through Size and Shape of Metal Nanostructures 129
6.3 Evolution of Shape Anisotropy 130
6.3.1 General Classifications of Nanostructures 130
6.3.2 Nuclei to Seed Transition 131
6.3.3 Shapes from Single-Crystalline Seeds 131
6.3.4 Shapes from Singly Twinned, Multiply Twinned Seeds, and Seeds with Stacking Faults (Zone II to V) 131
6.4 The Kinetic and Thermodynamic Control for Shape Anisotropy 133
6.4.1 Symmetry Breaking of Seeds 134
6.4.2 Kinetic Aspects in Evolution of Shape Anisotropy 135
6.4.3 Thermodynamic Aspects in Evolution of Shape Anisotropy 136
6.4.4 Competing Kinetics and Thermodynamics in Anisotropic Growth 136
6.5 Wet Chemical Synthesis and Related Mechanism of Au
Nanostructures 138
6.6 Summary 139
References 140
7 Polymeric Nanoparticles 145
Leonardo Caserio, Vladimir Matining, Camillo Colli, Emanuele Mauri, and Davide Moscatelli
7.1 Introduction 145
7.2 Properties of PNPs 146
7.3 Stimuli-Sensitive PNPs 150
7.3.1 pH-Responsive Polymers and PNPs 150
7.3.2 Redox-Responsive Polymers and PNPs 153
7.3.3 Ultrasound-Responsive Polymers and PNPs 154
7.3.4 Light-Responsive Polymers and PNPs 155
7.3.5 Temperature-Responsive Polymers and PNPs 156
7.4 Polymerization Techniques 159
7.4.1 ROP 159
7.4.2 RAFT Polymerization 159
7.4.3 ATRP 162
7.4.4 Emulsion Polymerization and Self-assembly 163
7.5 Biocompatible PNPs via Nanoprecipitation Strategies 165
7.5.1 Nanoprecipitation 165
7.5.2 Flash Nanoprecipitation 169
7.6 Conclusions 173
References 174
8 Multifunctional Nanoparticles 187
Gisela Luz
8.1 Introduction 187
8.2 What Are Multifunctional Nanoparticles? 187
8.3 Properties of Multifunctional NPs and Their Applications 190
8.3.1 Physicochemical Properties 191
8.3.1.1 Optical Properties 191
8.3.1.2 Magnetic Properties 192
8.3.1.3 Thermal Properties 194
8.3.1.4 Electrochemical Properties 196
8.3.2 Biological Properties 197
8.3.2.1 Biocompatibility and Toxicity 197
8.3.2.2 Targeting Ability 198
8.3.2.3 Biodegradability 199
8.3.2.4 Immunogenicity 200
8.4 Synthesis Methods and Formation Mechanisms 200
8.4.1 Bimetallic Nanoparticles 201
8.4.1.1 Physical Synthesis Methods 203
8.4.1.2 Chemical Synthesis Methods 204
8.4.1.3 Biological Synthesis Methods 208
8.4.2 Polymer-Metal NPs 208
8.4.2.1 Hydrogel-Metal Nanoparticles 212
8.5 Final Considerations 212
References 213
Section II Modeling Approaches for Synthesis of Nanoparticles 221
9 Overview of Modeling Approaches for Nanoparticle Synthesis in Liquid Phase 223
Puneet Koli and Rajdip Bandyopadhyaya
9.1 Introduction 223
9.1.1 Need for Modeling Approaches 224
9.2 Modeling Approaches for Studying Nanoparticle Formation Behavior 224
9.2.1 First-Principle Quantum Mechanical Models 224
9.2.1.1 Hartree-Fock Method 224
9.2.1.2 Hohenberg-Kohn and Kohn-Sham Formulations 225
9.2.1.3 Some Relevant Applications 226
9.2.2 Monte Carlo Simulations 228
9.2.2.1 Metropolis Monte Carlo Method 229
9.2.2.2 General Algorithm 229
9.2.2.3 Some Relevant Applications 230
9.2.3 Molecular Dynamics Simulations 233
9.2.3.1 General Algorithm 233
9.2.3.2 Some Relevant Applications 234
9.2.4 Population Balance Modeling 239
9.2.4.1 One-dimensional Population Balance Model 239
9.2.4.2 Some Relevant Applications 240
9.2.5 Mesoscale Models 241
9.2.5.1 Langevin Dynamics or Brownian Dynamics 241
9.2.5.2 Dissipative Particle Dynamics 242
9.2.5.3 Multiparticle Collision Dynamics 242
9.2.5.4 Lattice Boltzmann Method 242
9.3 Conclusions 243
References 244
10 Mechanistic Understanding of Nanoparticle Growth Using Density Functional Theory 247
Bratin Kumar Das and Ethayaraja Mani
10.1 Introduction 247
10.2 Quantum Mechanical Theory 248
10.2.1 The SchrodingerWave Equation 248
10.2.2 Density Functional Theory 249
10.3 Applications of DFT in Nanoparticle Growth 251
10.4 Conclusions 255
References 256
11 Molecular Dynamics (MD) 259
Miteshkumar Moirangthem, Kush Kumar, and Santosh Kumar Meena
11.1 Introduction to Basic Concepts in MD 259
11.1.1 Equations of Motion 260
11.1.2 Integration of the Equation of Motion 261
11.1.3 Ensembles 262
11.1.4 Interaction Potentials 263
11.1.5 Cutoff Scheme and Treatment of Long-range Interactions 264
11.1.6 Periodic Boundary Conditions 265
11.1.7 Forcefield Parameters 265
11.1.8 Deriving New Parameters 265
11.1.9 Analysis 266
11.2 Scope of MD in Understanding the Formation Mechanisms of Anisotropic Nanoparticles and Their Surface Properties 266
11.3 Understanding the Shape Control of Gold Nanorod Using MD Simulations 267
11.3.1 Model and Simulation Details 267
11.3.2 Results and Discussion 270
11.3.2.1 Role of Surfactant 270
11.3.2.2 Role of Geometry of Nanoseed 274
11.3.2.3 Role of Halide Ions 275
11.3.2.4 Role of Silver Ions 279
11.3.2.5 Inclusion of Metal Surface Polarization Effect in Simulation Models 281
11.3.3 Conclusions 284
References 286
12 Kinetic Monte Carlo Simulation of Nanoparticle Growth 291
Remya Ann Mathews Kalapurakal and Ethayaraja Mani
12.1 Introduction 291
12.2 Theory of Jump Markov Processes 292
12.3 kMC Simulation of Nanoparticle Formation 295
12.3.1 kMC Simulation of Pure Aggregation 295
12.3.2 kMC Simulation of Nucleation and Growth Processes 296
12.3.3 kMC Simulation of Reaction and Molecular Growth 298
12.3.4 kMC Simulation of Ostwald Ripening 299
12.3.5 kMC Simulation of Nucleation, Growth, and Aggregation 301
12.3.6 kMC Simulation of Nanoparticle Formation in Reverse Micelles 302
References 308
13 Modeling of Nanoparticle Formation Using Population Balance Equation 313
Sriram Krishnamurthy and Ethayaraja Mani
13.1 Introduction 313
13.2 Population Balance Equation 314
13.2.1 Analytical Solution of PBE 315
13.2.1.1 Pure Growth 315
13.2.1.2 Nucleation and Growth 316
13.2.1.3 Pure Aggregation 316
13.3 Nanoparticle Formation 317
13.3.1 PBM of Pure Aggregation 317
13.3.2 PBM of Reaction, Nucleation, and Growth 321
13.3.3 Mechanism-enabled PBM of Formation of Nanoparticles 323
13.3.4 Effect of Mixing on the Formation of Nanoparticles 324
13.3.5 PBM of Nanoparticle Formation in Swollen Reverse Micelles (RM) 326
13.4 Conclusion 329
13.A Numerical Solution of PBE 329
13.A.1 Moment Methods 329
13.A.2 Sectional Methods 330
13.A.3 Stochastic Methods 330
References 331
Section III Applications of Nanoparticles in Biomedicine 335
14 Emerging Trends in Optical and Magnetic Sensing for Biomolecular Detection 337
Homa Hassan, Shrishti Kumari, Sriram Rathnakumar, E. T. Athira, Mayilvahanan Bose, V. V. R. Sai, Narayanan Madaboosi, and Jitendra Satija
14.1 Introduction 337
14.2 Optical Biosensors 338
14.2.1 Colorimetric Biosensors 338
14.2.2 Fluorescent Biosensors 340
14.2.3 Surface-Enhanced Raman Scattering (SERS) Biosensors 344
14.2.4 Surface Plasmon Resonance and Localized SPR Biosensors 346
14.2.5 EvanescentWave Biosensors 348
14.3 Magnetic Biosensors 351
14.3.1 Magnetic Nanoparticles 351
14.3.1.1 Magnetic Nanoparticles - Synthesis, Characterization and Properties 351
14.3.2 Magnetic Sensors 354
14.3.2.1 Superconducting Quantum Interference Devices (SQUID) 354
14.3.2.2 Hall Effect Sensors 355
14.3.2.3 Magnetoresistive Magnetometers 356
14.3.3 Magnetic Nanoparticles for Sample Preparation and Bioassays 359
14.3.4 Non-microfluidic MNPs for Biosensing 360
14.3.5 MNPs for Microfluidic Sample Preparation and Enrichment 362
14.3.6 MNPs for Signal Transduction in Microfluidic Sensing 363
14.4 Summary and Future Perspectives 364
References 365
15 Nanoparticles in Imaging and Diagnostics 377
Sofie Snipstad and Catharina de Lange Davies
15.1 Introduction 377
15.2 Imaging Techniques 377
15.2.1 MRI 377
15.2.1.1 Principle 377
15.2.1.2 Contrast Agents 378
15.2.1.3 Application 378
15.2.2 CT 379
15.2.2.1 Principle 379
15.2.2.2 Contrast Agents 379
15.2.2.3 Application 380
15.2.3 PET 380
15.2.3.1 Principles 380
15.2.3.2 Radioisotopes 381
15.2.3.3 Application 381
15.2.4 SPECT 382
15.2.4.1 Principles 382
15.2.4.2 Radioisotopes 382
15.2.4.3 Application 382
15.2.5 US Imaging 382
15.2.5.1 Principle 382
15.2.5.2 Contrast Agents 383
15.2.5.3 Application 383
15.2.6 Photoacoustic Imaging 384
15.2.6.1 Principle 384
15.2.6.2 Contrast Agents 384
15.2.6.3 Application 384
15.2.7 Optical Imaging 384
15.2.7.1 Principle 384
15.2.7.2 Contrast Agents 385
15.2.7.3 Application 385
15.3 Advantages and Disadvantages of the Various Imaging Modalities 386
15.3.1 Labeling of Nanoparticles 387
15.4 Combining Imaging Modalities 387
15.5 Ex Vivo Imaging 389
References 389
16 Drug Delivery Using Nanocarriers 395
Catharina de Lange Davies and Sofie Snipstad
16.1 Barriers for Delivery of Nanoparticles 395
16.1.1 Nanoparticles in the Blood 395
16.1.2 Transport Process: Convection and Diffusion 397
16.1.3 Extravasation of NPs Across the CapillaryWall 398
16.1.4 Penetration of NPs Through the Interstitial Space 399
16.2 Cellular Uptake and Intracellular Trafficking 400
16.3 Active-Passive Targeting 401
16.4 Applications in Disease Treatment 402
16.4.1 Cancer 402
16.4.2Neurogenerative Diseases 405
16.4.3 Immunotherapy 406
16.4.4 Gene Therapy 407
16.4.5 Inflammatory Diseases 407
16.4.6 Cardiovascular Diseases 407
16.5 Improving Delivery of NPs 408
16.5.1 Remodeling the Tumor Microenvironment 408
16.5.2 Ultrasound-mediated Drug Delivery 408
16.6 Conclusion 410
Acknowledgement 410
References 410
Index 423