Engineering Nanoparticles for Biomedical Applications : From Theory to Experiments and Modeling (1. Auflage)

個数:
電子版価格
¥23,072
  • 電子版あり

Engineering Nanoparticles for Biomedical Applications : From Theory to Experiments and Modeling (1. Auflage)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 450 p.
  • 言語 ENG
  • 商品コード 9783527353170

Full Description

Practical approach to solution-based synthesis methods and mechanisms from a chemical engineering perspective

Engineering Nanoparticles for Biomedical Applications provides an in-depth, hands-on overview of synthesis and formation mechanisms, characterization, and functionalization of nanoparticles (NPs) using solution-based methods developed from fundamental principles of nucleation and growth. Various experimental synthesis strategies are supported via simulation and modeling. The NPs studied in this book are designed to target an array of biomedical applications.

In this book, readers can practice reverse engineering by first choosing a specific biomedical application, upon which the reader will be exposed to a host of synthesis options. Based on desired properties of NPs, this book can then provide all the relevant information using experimental and modeling approaches for that specific biomedical application.

Sample topics covered in Engineering Nanoparticles for Biomedical Applications include:

Physico-chemical properties of NPs such as magnetic, plasmonic, and stimuli-sensitivity properties
Modeling approaches including Density Functional Theory (DFT), Molecular Dynamics (MD), Monte Carlo simulations, and Population Balance Model
Applications of NPs with emphasis on biomedical applications such as biosensing, diagnostics/imaging, and drug delivery
Optical, magnetic, stimuli-responsive, and biological properties of multifunctional nanoparticles
Spherical and anisotropic iron oxide and gold nanoparticles, polymeric nanoparticles and multifunctional nanoparticles

Engineering Nanoparticles for Biomedical Applications is an essential reference on the subject for chemists and engineers at every level of academia and industry.

Contents

Preface xvii

Section I Synthesis and Characterization of Nanoparticles 1

1 Nucleation and Growth of Nanoparticles 3
Sulalit Bandyopadhyay and Seniz Ucar

1.1 Classical Nucleation Theory 4

1.2 Phase Stability and Phase Transformations 6

1.3 Crystal Growth 7

1.4 Control of Particle Size and Morphology 9

1.5 Concluding Remarks 18

2 Characterization of Nanoparticles 23
Hammad Farooq and Haroon Zafar

2.1 Introduction 23

2.2 X-ray Diffraction (XRD) 24

2.3 Dynamic Light Scattering (DLS) 27

2.4 Nanoparticle Tracking Analysis (NTA) 29

2.5 Analytical Centrifuge (LUMiSizer) 33

2.6 Scanning Transmission Electron Microscopy (STEM) 36

2.7 Atomic Force Microscopy (AFM) 38

2.8 Fourier Transform Infrared (FT-IR) Spectroscopy 40

2.9 Raman Spectroscopy 41

2.10 Vibrating Sample Magnetometer 44

2.11 UV-Vis Spectroscopy 45

2.12 Selecting a Characterization Technique 47

3 Spherical Magnetic Nanoparticles 53
Zeeshan Ali and Reema Ansar

3.1 Magnetic Susceptibility 53

3.2 Magnetic Single-Domain Nanoparticles 56

3.3 Magnetic Anisotropy 57

3.4 Magnetic Interparticle Interactions 57

3.5 Characterizations of Magnetic Properties 59

3.6 Iron Oxides 61

3.7 Synthesis Methods 62

4 Anisotropic Magnetic Nanoparticles 79
Kingsley Poon, Jyothish Kumar, Janardhanan Saraswathy, Yogambha Ramaswamy, and Gurvinder Singh

4.1 Introduction 79

4.2 Synthesis of Anisotropic Magnetic Nanoparticles 80

4.3 Magnetic Properties of Anisotropic Nanoparticles 87

4.4 Biomedical Applications of Anisotropic Magnetic Nanoparticles 90

4.5 Summary 98

5 Size Selective Synthesis of Spherical Gold Nanoparticles 103
Avijit Mondal and Nikhil R. Jana

5.1 Introduction 103

5.2 Formation Mechanism of Au NP via Colloid Chemistry Approach 104

5.3 Controlling Au NP Size Distribution 116

5.4 Conclusions and Future Aspect 117

6 Anisotropic Plasmonic Nanostructures 127
Neethu Thomas and Soumodeep Biswas

6.1 Introduction 127

6.2 Optical Properties of Plasmonic Nanostructures 128

6.3 Evolution of Shape Anisotropy 132

6.4 The Kinetic and Thermodynamic Control for Shape Anisotropy 135

6.5 Wet Chemical Synthesis and Related Mechanism of Au Nanostructures 140

6.6 Summary 141

7 Polymeric Nanoparticles 147
Leonardo Caserio, Vladimir Matining, Camillo Colli, Emanuele Mauri, and Davide Moscatelli

7.1 Introduction 147

7.2 Properties of PNPs 148

7.3 Stimuli-Sensitive PNPs 152

7.4 Polymerization Techniques 161

7.5 Biocompatible PNPs via Nanoprecipitation Strategies 167

7.6 Conclusions 175

8 Multifunctional Nanoparticles 189
Gisela Luz

8.1 Introduction 189

8.2 What Are Multifunctional Nanoparticles? 189

8.3 Properties of Multifunctional Nanoparticles and Their Applications 192

8.4 Synthesis Methods and Formation Mechanisms 203

8.5 Final Considerations 215

Section II Modeling Approaches for Synthesis of Nanoparticles 225

9 Overview of Modeling Approaches for Nanoparticle Synthesis in Liquid Phase 227
Puneet Koli and Rajdip Bandyopadhyaya

9.1 Introduction 227

9.2 Modeling Approaches for Studying Nanoparticle Formation 228

9.3 Conclusions 247

10 Mechanistic Understanding of Nanoparticle Growth Using Density Functional Theory 251
Bratin Kumar Das and Ethayaraja Mani

10.1 Introduction 251

10.2 Quantum Mechanical Theory 252

10.3 Applications of DFT in Nanoparticle Growth 255

10.4 Conclusions 259

11 Molecular Dynamics (MD) 263
Miteshkumar Moirangthem, Kush Kumar, and Santosh Kumar Meena

11.1 Introduction to Basic Concepts in MD 263

11.2 Scope of MD in Understanding the Formation Mechanisms of Anisotropic Nanoparticles and Their Surface Properties 270

11.3 Understanding the Shape Control of Gold Nanorod Using MD Simulations 271

12 Kinetic Monte Carlo Simulation of Nanoparticle Growth 295
Remya Ann Mathews Kalapurakal and Ethayaraja Mani

12.1 Introduction 295

12.2 Theory of Jump Markov Processes 296

12.3 kMC Simulation of Nanoparticle Formation 299

13 Modeling of Nanoparticle Formation Using Population Balance Equation 317
Sriram Krishnamurthy and Ethayaraja Mani

13.1 Introduction 317

13.2 Population Balance Equation 318

13.3 Nanoparticle Formation 321

13.4 Conclusion 333

Section III Applications of Nanoparticles in Biomedicine 339

14 Emerging Trends in Optical and Magnetic Sensing for Biomolecular Detection 341
Homa Hassan, Shrishti Kumari, Sriram Rathnakumar, E. T. Athira, Mayilvahanan Bose, V. V. R. Sai, Narayanan Madaboosi, and Jitendra Satija

14.1 Introduction 341

14.2 Optical Biosensors 342

14.3 Magnetic Biosensors 355

14.4 Summary and Future Perspectives 368

15 Nanoparticles in Imaging and Diagnostics 381
Sofie Snipstad and Catharina de Lange Davies

15.1 Introduction 381

15.2 Imaging Techniques 381

15.3 Advantages and Disadvantages of the Various Imaging Modalities 390

15.4 Combining Imaging Modalities 391

15.5 Ex Vivo Imaging 393

16 Drug Delivery Using Nanocarriers 399
Catharina de Lange Davies and Sofie Snipstad

16.1 Barriers for Delivery of Nanoparticles 399

16.2 Cellular Uptake and Intracellular Trafficking 404

16.3 Active-Passive Targeting 405

16.4 Applications in Disease Treatment 406

16.5 Improving Delivery of NPs 412

16.6 Conclusion 414

Acknowledgement 414
References 414
Index 427

最近チェックした商品