Engineering Nanoparticles for Biomedical Applications : From Theory to Experiments and Modelling (1. Auflage. 2025. 448 S. 50 SW-Abb., 77 Farbabb., 27 Tabellen. 244 mm)

個数:
  • 予約

Engineering Nanoparticles for Biomedical Applications : From Theory to Experiments and Modelling (1. Auflage. 2025. 448 S. 50 SW-Abb., 77 Farbabb., 27 Tabellen. 244 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 450 p.
  • 言語 ENG
  • 商品コード 9783527353170

Full Description

Practical approach to solution-based synthesis methods and mechanisms from a chemical engineering perspectives

Engineering Nanoparticles for Biomedical Applications provides an in-depth, hands-on overview of synthesis and formation mechanisms, characterization, and functionalization of nanoparticles (NPs) using solution-based methods developed from fundamental principles of nucleation and growth. Various experimental synthesis strategies are supported via simulation and modeling. The NPs studied in this book are designed to target an array of biomedical applications.

In this book, readers can practice reverse engineering by first choosing a specific biomedical application, upon which the reader will be exposed to a host of synthesis options. Based on desired properties of NPs, this book can then provide all the relevant information using modeling approaches for that specific biomedical application.

Sample topics covered in Engineering Nanoparticles for Biomedical Applications include:

Physico-chemical properties of NPs such as magnetic, plasmonic, and stimuli-sensitivity properties
Modeling approaches including Density Functional Theory (DFT), Molecular Dynamics (MD), Monte Carlo simulations, and Population Balance Model
Applications of NPs with emphasis on biomedical applications such as biosensing, diagnostics/imaging, and drug delivery
Optical, magnetic, thermal, electrochemical, and biological properties of multifunctional nanoparticles
Iron oxides in spherical magnetic NPs, detailing co-precipitation, thermal decomposition, and colloidal templating synthesis methods

Engineering Nanoparticles for Biomedical Applications is an essential reference on the subject for chemists and engineers at every level of academia and industry.

Contents

Preface xvii

Section I Synthesis and Characterization of

Nanoparticles 1

1 Nucleation and Growth of Nanoparticles 3

Sulalit Bandyopadhyay and Seniz Ucar

1.1 Classical Nucleation Theory 4

1.2 Phase Stability and Phase Transformations 6

1.3 Crystal Growth 7

1.4 Control of Particle Size and Morphology 9

1.4.1 Control of Size and Size Distribution of Spherical NPs 9

1.4.1.1 Example 1: Spherical Iron Oxide NPs 11

1.4.1.2 Example 2: Spherical Au NPs 12

1.4.1.3 Example 3: Spherical Polymeric NPs 13

1.4.2 Control of Morphology of NPs 14

1.4.2.1 Example 1: Anisotropic Iron Oxide NPs 16

1.4.2.2 Example 2: Anisotropic Au NPs 17

1.5 Concluding Remarks 18

References 19

2 Characterization of Nanoparticles 23

Hammad Farooq and Haroon Zafar

2.1 Introduction 23

2.2 X-ray Diffraction (XRD) 24

2.3 Dynamic Light Scattering (DLS) 27

2.4 Nanoparticle Tracking Analysis (NTA) 29

2.5 Analytical Centrifuge (LUMiSizer) 33

2.6 Scanning Transmission Electron Microscopy (STEM) 36

2.7 Atomic Force Microscopy (AFM) 38

2.8 Fourier Transform Infrared (FT-IR) Spectroscopy 40

2.9 Raman Spectroscopy 41

2.10 Vibrating Sample Magnetometer 44

2.11 UV-Vis Spectroscopy 45

2.12 Selecting a Characterization Technique 47

References 48

3 Spherical Magnetic Nanoparticles 53

3.1 Magnetic Susceptibility 53

3.2 Magnetic Single-Domain Nanoparticles 56

3.3 Magnetic Anisotropy 57

3.4 Magnetic Interparticle Interactions 57

3.4.1 Exchange Interaction 57

3.4.2 Dipolar Interaction 58

3.4.3 RKKY Interaction 58

3.5 Characterizations of Magnetic Properties 59

3.5.1 Vibrating Sample Magnetometery (VSM) 59

3.5.2 Superconducting Quantum Interference Device (SQUID) 59

3.5.3 Magnetic Particle Spectroscopy 60

3.5.4 AC Susceptometry (ACS) 60

3.6 Iron Oxides 61

3.7 Synthesis Methods 62

3.7.1 Co-precipitation 62

3.7.2 Thermal Decomposition 66

3.7.3 Colloidal Templating 68

3.7.4 Other Methods 68

References 72

4 Anisotropic Magnetic Nanoparticles 77

Kingsley Poon, Jyotish Kumar, Janardhanan Saraswathy, Yogambha Ramaswamy, and Gurvinder Singh

4.1 Introduction 77

4.2 Synthesis of Anisotropic Magnetic Nanoparticles 78

4.2.1 Thermal Decomposition 79

4.2.2 Co-precipitation 83

4.2.3 Hydrothermal 83

4.3 Magnetic Properties of Anisotropic Nanoparticles 85

4.4 Biomedical Applications of Anisotropic Magnetic Nanoparticles 88

4.4.1 Anisotropic Magnetic Nanoparticles for MRI Contrast Agent 88

4.4.2 Anisotropic Magnetic Nanoparticles for Magnetic Hyperthermia 92

4.5 Summary 96

References 97

5 Size Selective Synthesis of Spherical Gold Nanoparticles 101

Avijit Mondal and Nikhil R. Jana

5.1 Introduction 101

5.2 Formation Mechanism of Au NP via Colloid Chemistry Approach 102

5.2.1 Au NP of 1-5nm Size Using Strong Capping Ligands 105

5.2.2 Au NP in the Size Range of 5-200nm via Seeding Growth 106

5.2.3 Au NP of 5-100nm by Controlling Nucleation-Growth Kinetics 110

5.2.4 Au NPs in the Size Range of 1-15 nm via Ostwald/Digestive Ripening Approach 113

5.3 Controlling Au NP Size Distribution 114

5.4 Conclusions and Future Aspect 115

References 116

6 Anisotropic Plasmonic Nanostructures 125

Neethu Thomas and Soumodeep Biswas

6.1 Introduction 125

6.2 Optical Properties of Plasmonic Nanostructures 126

6.2.1 Theory of Surface Plasmon Resonance 126

6.2.2 LSPR Through Mie and Mie-Gans Theory 127

6.2.3 Tuning of LSPR Through Size and Shape of Metal Nanostructures 129

6.3 Evolution of Shape Anisotropy 130

6.3.1 General Classifications of Nanostructures 130

6.3.2 Nuclei to Seed Transition 131

6.3.3 Shapes from Single-Crystalline Seeds 131

6.3.4 Shapes from Singly Twinned, Multiply Twinned Seeds, and Seeds with Stacking Faults (Zone II to V) 131

6.4 The Kinetic and Thermodynamic Control for Shape Anisotropy 133

6.4.1 Symmetry Breaking of Seeds 134

6.4.2 Kinetic Aspects in Evolution of Shape Anisotropy 135

6.4.3 Thermodynamic Aspects in Evolution of Shape Anisotropy 136

6.4.4 Competing Kinetics and Thermodynamics in Anisotropic Growth 136

6.5 Wet Chemical Synthesis and Related Mechanism of Au

Nanostructures 138

6.6 Summary 139

References 140

7 Polymeric Nanoparticles 145

Leonardo Caserio, Vladimir Matining, Camillo Colli, Emanuele Mauri, and Davide Moscatelli

7.1 Introduction 145

7.2 Properties of PNPs 146

7.3 Stimuli-Sensitive PNPs 150

7.3.1 pH-Responsive Polymers and PNPs 150

7.3.2 Redox-Responsive Polymers and PNPs 153

7.3.3 Ultrasound-Responsive Polymers and PNPs 154

7.3.4 Light-Responsive Polymers and PNPs 155

7.3.5 Temperature-Responsive Polymers and PNPs 156

7.4 Polymerization Techniques 159

7.4.1 ROP 159

7.4.2 RAFT Polymerization 159

7.4.3 ATRP 162

7.4.4 Emulsion Polymerization and Self-assembly 163

7.5 Biocompatible PNPs via Nanoprecipitation Strategies 165

7.5.1 Nanoprecipitation 165

7.5.2 Flash Nanoprecipitation 169

7.6 Conclusions 173

References 174

8 Multifunctional Nanoparticles 187

Gisela Luz

8.1 Introduction 187

8.2 What Are Multifunctional Nanoparticles? 187

8.3 Properties of Multifunctional NPs and Their Applications 190

8.3.1 Physicochemical Properties 191

8.3.1.1 Optical Properties 191

8.3.1.2 Magnetic Properties 192

8.3.1.3 Thermal Properties 194

8.3.1.4 Electrochemical Properties 196

8.3.2 Biological Properties 197

8.3.2.1 Biocompatibility and Toxicity 197

8.3.2.2 Targeting Ability 198

8.3.2.3 Biodegradability 199

8.3.2.4 Immunogenicity 200

8.4 Synthesis Methods and Formation Mechanisms 200

8.4.1 Bimetallic Nanoparticles 201

8.4.1.1 Physical Synthesis Methods 203

8.4.1.2 Chemical Synthesis Methods 204

8.4.1.3 Biological Synthesis Methods 208

8.4.2 Polymer-Metal NPs 208

8.4.2.1 Hydrogel-Metal Nanoparticles 212

8.5 Final Considerations 212

References 213

Section II Modeling Approaches for Synthesis of Nanoparticles 221

9 Overview of Modeling Approaches for Nanoparticle Synthesis in Liquid Phase 223

Puneet Koli and Rajdip Bandyopadhyaya

9.1 Introduction 223

9.1.1 Need for Modeling Approaches 224

9.2 Modeling Approaches for Studying Nanoparticle Formation Behavior 224

9.2.1 First-Principle Quantum Mechanical Models 224

9.2.1.1 Hartree-Fock Method 224

9.2.1.2 Hohenberg-Kohn and Kohn-Sham Formulations 225

9.2.1.3 Some Relevant Applications 226

9.2.2 Monte Carlo Simulations 228

9.2.2.1 Metropolis Monte Carlo Method 229

9.2.2.2 General Algorithm 229

9.2.2.3 Some Relevant Applications 230

9.2.3 Molecular Dynamics Simulations 233

9.2.3.1 General Algorithm 233

9.2.3.2 Some Relevant Applications 234

9.2.4 Population Balance Modeling 239

9.2.4.1 One-dimensional Population Balance Model 239

9.2.4.2 Some Relevant Applications 240

9.2.5 Mesoscale Models 241

9.2.5.1 Langevin Dynamics or Brownian Dynamics 241

9.2.5.2 Dissipative Particle Dynamics 242

9.2.5.3 Multiparticle Collision Dynamics 242

9.2.5.4 Lattice Boltzmann Method 242

9.3 Conclusions 243

References 244

10 Mechanistic Understanding of Nanoparticle Growth Using Density Functional Theory 247

Bratin Kumar Das and Ethayaraja Mani

10.1 Introduction 247

10.2 Quantum Mechanical Theory 248

10.2.1 The SchrodingerWave Equation 248

10.2.2 Density Functional Theory 249

10.3 Applications of DFT in Nanoparticle Growth 251

10.4 Conclusions 255

References 256

11 Molecular Dynamics (MD) 259

Miteshkumar Moirangthem, Kush Kumar, and Santosh Kumar Meena

11.1 Introduction to Basic Concepts in MD 259

11.1.1 Equations of Motion 260

11.1.2 Integration of the Equation of Motion 261

11.1.3 Ensembles 262

11.1.4 Interaction Potentials 263

11.1.5 Cutoff Scheme and Treatment of Long-range Interactions 264

11.1.6 Periodic Boundary Conditions 265

11.1.7 Forcefield Parameters 265

11.1.8 Deriving New Parameters 265

11.1.9 Analysis 266

11.2 Scope of MD in Understanding the Formation Mechanisms of Anisotropic Nanoparticles and Their Surface Properties 266

11.3 Understanding the Shape Control of Gold Nanorod Using MD Simulations 267

11.3.1 Model and Simulation Details 267

11.3.2 Results and Discussion 270

11.3.2.1 Role of Surfactant 270

11.3.2.2 Role of Geometry of Nanoseed 274

11.3.2.3 Role of Halide Ions 275

11.3.2.4 Role of Silver Ions 279

11.3.2.5 Inclusion of Metal Surface Polarization Effect in Simulation Models 281

11.3.3 Conclusions 284

References 286

12 Kinetic Monte Carlo Simulation of Nanoparticle Growth 291

Remya Ann Mathews Kalapurakal and Ethayaraja Mani

12.1 Introduction 291

12.2 Theory of Jump Markov Processes 292

12.3 kMC Simulation of Nanoparticle Formation 295

12.3.1 kMC Simulation of Pure Aggregation 295

12.3.2 kMC Simulation of Nucleation and Growth Processes 296

12.3.3 kMC Simulation of Reaction and Molecular Growth 298

12.3.4 kMC Simulation of Ostwald Ripening 299

12.3.5 kMC Simulation of Nucleation, Growth, and Aggregation 301

12.3.6 kMC Simulation of Nanoparticle Formation in Reverse Micelles 302

References 308

13 Modeling of Nanoparticle Formation Using Population Balance Equation 313

Sriram Krishnamurthy and Ethayaraja Mani

13.1 Introduction 313

13.2 Population Balance Equation 314

13.2.1 Analytical Solution of PBE 315

13.2.1.1 Pure Growth 315

13.2.1.2 Nucleation and Growth 316

13.2.1.3 Pure Aggregation 316

13.3 Nanoparticle Formation 317

13.3.1 PBM of Pure Aggregation 317

13.3.2 PBM of Reaction, Nucleation, and Growth 321

13.3.3 Mechanism-enabled PBM of Formation of Nanoparticles 323

13.3.4 Effect of Mixing on the Formation of Nanoparticles 324

13.3.5 PBM of Nanoparticle Formation in Swollen Reverse Micelles (RM) 326

13.4 Conclusion 329

13.A Numerical Solution of PBE 329

13.A.1 Moment Methods 329

13.A.2 Sectional Methods 330

13.A.3 Stochastic Methods 330

References 331

Section III Applications of Nanoparticles in Biomedicine 335

14 Emerging Trends in Optical and Magnetic Sensing for Biomolecular Detection 337

Homa Hassan, Shrishti Kumari, Sriram Rathnakumar, E. T. Athira, Mayilvahanan Bose, V. V. R. Sai, Narayanan Madaboosi, and Jitendra Satija

14.1 Introduction 337

14.2 Optical Biosensors 338

14.2.1 Colorimetric Biosensors 338

14.2.2 Fluorescent Biosensors 340

14.2.3 Surface-Enhanced Raman Scattering (SERS) Biosensors 344

14.2.4 Surface Plasmon Resonance and Localized SPR Biosensors 346

14.2.5 EvanescentWave Biosensors 348

14.3 Magnetic Biosensors 351

14.3.1 Magnetic Nanoparticles 351

14.3.1.1 Magnetic Nanoparticles - Synthesis, Characterization and Properties 351

14.3.2 Magnetic Sensors 354

14.3.2.1 Superconducting Quantum Interference Devices (SQUID) 354

14.3.2.2 Hall Effect Sensors 355

14.3.2.3 Magnetoresistive Magnetometers 356

14.3.3 Magnetic Nanoparticles for Sample Preparation and Bioassays 359

14.3.4 Non-microfluidic MNPs for Biosensing 360

14.3.5 MNPs for Microfluidic Sample Preparation and Enrichment 362

14.3.6 MNPs for Signal Transduction in Microfluidic Sensing 363

14.4 Summary and Future Perspectives 364

References 365

15 Nanoparticles in Imaging and Diagnostics 377

Sofie Snipstad and Catharina de Lange Davies

15.1 Introduction 377

15.2 Imaging Techniques 377

15.2.1 MRI 377

15.2.1.1 Principle 377

15.2.1.2 Contrast Agents 378

15.2.1.3 Application 378

15.2.2 CT 379

15.2.2.1 Principle 379

15.2.2.2 Contrast Agents 379

15.2.2.3 Application 380

15.2.3 PET 380

15.2.3.1 Principles 380

15.2.3.2 Radioisotopes 381

15.2.3.3 Application 381

15.2.4 SPECT 382

15.2.4.1 Principles 382

15.2.4.2 Radioisotopes 382

15.2.4.3 Application 382

15.2.5 US Imaging 382

15.2.5.1 Principle 382

15.2.5.2 Contrast Agents 383

15.2.5.3 Application 383

15.2.6 Photoacoustic Imaging 384

15.2.6.1 Principle 384

15.2.6.2 Contrast Agents 384

15.2.6.3 Application 384

15.2.7 Optical Imaging 384

15.2.7.1 Principle 384

15.2.7.2 Contrast Agents 385

15.2.7.3 Application 385

15.3 Advantages and Disadvantages of the Various Imaging Modalities 386

15.3.1 Labeling of Nanoparticles 387

15.4 Combining Imaging Modalities 387

15.5 Ex Vivo Imaging 389

References 389

16 Drug Delivery Using Nanocarriers 395

Catharina de Lange Davies and Sofie Snipstad

16.1 Barriers for Delivery of Nanoparticles 395

16.1.1 Nanoparticles in the Blood 395

16.1.2 Transport Process: Convection and Diffusion 397

16.1.3 Extravasation of NPs Across the CapillaryWall 398

16.1.4 Penetration of NPs Through the Interstitial Space 399

16.2 Cellular Uptake and Intracellular Trafficking 400

16.3 Active-Passive Targeting 401

16.4 Applications in Disease Treatment 402

16.4.1 Cancer 402

16.4.2Neurogenerative Diseases 405

16.4.3 Immunotherapy 406

16.4.4 Gene Therapy 407

16.4.5 Inflammatory Diseases 407

16.4.6 Cardiovascular Diseases 407

16.5 Improving Delivery of NPs 408

16.5.1 Remodeling the Tumor Microenvironment 408

16.5.2 Ultrasound-mediated Drug Delivery 408

16.6 Conclusion 410

Acknowledgement 410

References 410

Index 423

最近チェックした商品