Iron-Sulfur Clusters : Biogenesis and Biochemistry (1. Auflage. 2025. 800 S. 150 SW-Abb., 75 Farbabb. 244 mm)

個数:
電子版価格
¥40,546
  • 電子版あり

Iron-Sulfur Clusters : Biogenesis and Biochemistry (1. Auflage. 2025. 800 S. 150 SW-Abb., 75 Farbabb. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 768 p.
  • 言語 ENG
  • 商品コード 9783527352555

Full Description

An authoritative and up-to-date collection of resources covering the ubiquitous iron-sulfur cluster-containing proteins

In Iron-Sulfur Clusters: Biogenesis and Biochemistry, a team of distinguished researchers delivers an incisive and practical discussion of the assembly and role of metalloproteins containing an iron atom in a mononuclear or binuclear metal-active site, or where the assembly and final activity of the enzyme depends on an Fe-S cluster containing protein.

The book examines the crosstalk in the assembly of metal-active sites and the roles played by various metal ions in polynuclear metalloclusters. It also describes metal homeostasis and trafficking in a cellular context and explains why the availability of metal ions is tightly regulated.

Of particular interest to chemists working with iron-sulfur (Fe-S) clusters in biology, biochemistry, pharmaceuticals, and drug synthesis, the book also contains:

A thorough introduction to the biosynthesis of hydrogenase cofactors and hydrogenase reaction mechanisms
Comprehensive explorations of the reaction mechanisms of molybdoenzymes, including sulfite oxidase, aldehyde oxidase, and formate dehydrogenase
Practical discussions of the biosynthesis of Fe-S clusters in prokaryotes and eukaryotes
Complete examinations of the insertion of Fe-S clusters and the biosynthesis of Moco and FeMoco
An overview of the chemical, crystallographic, spectroscopic and theoretical methods commonly used to characterize Fe-S clusters.

Perfect for biochemists and protein, pharmaceutical, bioinorganic, and organic chemists, Iron-Sulfur Clusters will also be useful for food and environmental chemists, as well as professionals working in the pharmaceutical industry.

Contents

Volume 1

Preface xv

1 ISC-based Fe-S Protein Biogenesis in Bacteria 1

Béatrice Py and Frédéric Barras

2 Unraveling the Complexity of the Suf-Based Fe-S

Biogenesis 25

Ingie Elchennawi, Claire E. Fisher, Franklin Wayne Outten, and Sandrine

Ollagnier de Choudens

3 Biogenesis of Mitochondrial Iron-Sulfur Proteins 57

Ulrich Mühlenhoff, Oliver Stehling, and Roland Lill

4 Iron-Sulfur Protein Maturation in the Cytosol of

Eukaryotes 87

Joseph J. Braymer and Antonio J. Pierik

5 Mammalian Aldehyde Oxidase 135

Maria Joao Romao, Guilherme Vilela-Alves, and Cristiano Mota

6 Biological Formation of Sulfide 159

Marion Jespersen and Tristan Wagner

7 The Molybdenum Cofactor, Its Biosynthesis, and Relation to

Fe-S Clusters in Bacteria 193

Paolo Olivieri and Silke Leimkühler

8 Molybdenum Cofactor Biosynthesis in Eukaryotes 227

Guenter Schwarz, Lukas Flohr, Emanuel Bruckisch, and Katrin

Fischer-Schrader

9 NifUS Is a Two-component Toolbox Involved in Assembling

Fe-S Clusters Associated with Nitrogen Fixation and

Beyond 257

Julia S. Martin del Campo, Shervin Shaybani, Dennis R. Dean, and Patricia C.

Dos Santos

10 Alternative Substrates of Nitrogenase 287

Frederik V. Schmidt and Johannes G. Rebelein

Volume 2

Preface xvii

11 Electron-Bifurcating Hydrogenases 317

Gregory E. Vansuch, Effie C. Kisgeropoulos, Jonathan R. Humphreys, Carolyn

E. Lubner, David W. Mulder, and Paul W. King

Chapter Goals 317

Main Chapter Points 317

11.1 Introduction 317

11.1.1 Hydrogenases: From "Simple" Prototypical Architectures to Not So

Simple Electron-Bifurcating Architectures 317

11.1.2 Electron Bifurcation: A Brief Overview 320

11.2 Physiology, Subunit Compositions, and Reactivity 321

11.2.1 Overview of Physiological Roles: Three Thematic Examples 321

11.2.2 Subunit Compositions and Reactivities 324

11.3 Structural and Biophysical Characterizations 337

11.3.1 Structures and Cofactors of Hyd-type Electron-Bifurcating

Hydrogenase 338

11.3.1.1 HydA and HydSL 339

11.3.1.2 HydB 340

11.3.1.3 HydC 341

11.3.2 Spectroscopy of HydABC and HndABCD 342

11.3.2.1 EPR Spectroscopy of the Fe-S Clusters in Tm HydABC 342

11.3.2.2 EPR Spectroscopy of HndABCD from S. fructosivorans 344

11.3.2.3 EPR and IR Spectroscopy of the H-Cluster in [FeFe]-HydABC 344

11.3.3 Structures and Cofactors of MvhAGD-HdrABC 346

11.3.3.1 Selenocysteine Considerations 348

11.3.4 Spectroscopy of MvhAGD 349

11.4 Mechanistic Proposals 349

11.4.1 Electron Bifurcation: General Mechanistic Considerations 350

11.4.2 [FeFe]- and [NiFe]--HydABC: Electron Transfer Pathways 352

11.4.3 [NiFe]-MvhAGD-HdrABC 356

11.4.3.1 Electron Transfer Pathways 356

11.4.3.2 CoM-S-S-CoB Binding and Reduction 359

11.5 Forefronts 360

11.6 Summary and Outlook 362

Acknowledgments 363

Author Contributions 363

References 364

12 Inhibition of [FeFe]-Hydrogenases by Small Molecules 381

Claudia Brocks and Thomas Happe

Chapter Goals 381

12.1 Historical Perspective of [FeFe]-Hydrogenase Research 381

12.2 Characteristics of [FeFe]-Hydrogenases: How They Do What They

Do 384

12.3 Small Molecules Inhibit [FeFe]-Hydrogenases 389

12.3.1 Diffusion of Small Molecules to the H-cluster 390

12.3.2 Irreversible Attack of O2 Molecules 392

12.3.3 Inhibitor Molecules that Protect [FeFe]-Hydrogenases Against O2 394

12.3.3.1 CO Protects Against the O2-Initiated H-Cluster Degradation 394

12.3.3.2 Formaldehyde Attacks Catalytically Important Sites of

[FeFe]-Hydrogenases 394

12.3.3.3 The Role of Sulfide in [FeFe]-Hydrogenases 396

12.3.3.4 Cba5H - A [FeFe]-Hydrogenase that Protects Itself by Its Own

Sulfide 396

12.3.4 Influences of Small Molecules on the Proton Transfer Pathway 398

12.4 Summary and Outlook 399

References 399

13 Biosynthesis of [NiFe]-Hydrogenase 407

Oliver Lenz and Giorgio Caserta

Chapter Goals and Main Chapter Points 407

13.1 [NiFe]-Hydrogenases and Their Function 407

13.2 The Inorganic Catalytic Center in the [NiFe]-Hydrogenase Basic

Module 409

13.3 Genetic Basis of [NiFe]-Hydrogenase Maturation 409

13.4 Cyanide Synthesis by HypE and HypF 412

13.5 Assembly of the Fe(CN)2CO Synthon on the HypCD Complex 414

13.6 Origin and Synthesis of the Carbon Monoxide Ligand 417

13.7 Transfer of the Fe(CN)2CO Synthon from the HypCD Complex to

Apo-Hydrogenase 419

13.8 Mobilization and Insertion of Nickel by HypAB 421

13.9 Role of the C-Terminal Extension of the Premature Large Subunit 425

13.10 Hydrogenase Maturation Intermediates Isolated from Living Cells 427

13.11 Iron-Sulfur Cluster Insertion into the Small Subunit 429

13.12 Subunit Oligomerization and Transport Across the Cytoplasmic

Membrane 431

13.13 Special Case: Maturation of O2-Tolerant Membrane-Bound

[NiFe]-Hydrogenases 433

13.14 Conclusions 435

Acknowledgments 436

References 436

14 [Fe]-Hydrogenase and the FeGP Cofactor Involved in the

CO2-Reducing Hydrogenotrophic Methanogenic Pathway 447

Seigo Shima, Joao Pedro Fernandes-Queiroz, and Masanori Kaneko

Chapter Goals 447

Main Chapter Points 447

14.1 Introduction 447

14.2 Unique Coenzymes Found in Methanogens 448

14.3 Enzymes Involved in the Hydrogenotrophic Methanogenic

Pathway 449

14.4 [NiFe]-Hydrogenases Involved in the Hydrogenotrophic

Methanogenesis 452

14.5 Function of [Fe]-Hydrogenase (Hmd) 453

14.6 Reconstitution of the Hmd Holoenzyme with the Extracted

Cofactor 454

14.7 Light Sensitivity of Hmd and Finding of the Functional Iron in the

Cofactor 456

14.8 Structure and Properties of the FeGP Cofactor 457

14.9 Photolysis Mechanism 459

14.10 Crystal Structures of Hmd Apoenzymes 459

14.10.1 Crystal Structure of Reconstituted Hmd Holoenzymes 460

14.10.2 Crystal Structure of Reconstituted Hmd with the Substrate 460

14.10.3 The Other Crystal Structures of Hmd and its Homologs 461

14.11 ESI-MS Analysis for Detection of the CO/Acyl Ligands 462

14.12 Biosynthesis of the FeGP Cofactor 463

14.12.1 Stable Isotope Labeling Experiments 463

14.12.2 The hcg Gene Cluster, Sequence Similarities, and Mutational

Analysis 465

14.12.3 Structure to Function Analysis of Hcg Proteins 466

14.12.3.1 HcgA 467

14.12.3.2 HcgB 467

14.12.3.3 HcgC 468

14.12.3.4 HcgD 470

14.12.3.5 HcgE 471

14.12.3.6 HcgF 472

14.12.3.7 HcgG 473

14.12.4 In Vitro Biosynthesis 473

14.12.4.1 Design of the In Vitro Biosynthesis Assay 474

14.12.4.2 Confirmation of the Precursors by In Vitro Biosynthesis 475

14.12.4.3 Basis of the In Vitro Complementation Assay 476

14.12.4.4 In Vitro Complementation of HcgA 476

14.12.4.5 In Vitro Complementation of HcgG 477

14.12.5 Proposed Biosynthesis Sequence of the FeGP Cofactor 479

14.13 Conclusion 479

Acknowledgment 480

References 480

15 Catalysis by Hydrogenase 489

Seigo Shima, James A. Birrell, Sven T. Stripp, Giorgio Caserta, and Oliver Lenz

Chapter Goals and Main Chapter Points 489

15.1 Catalytic Cycle of [Fe]-Hydrogenase 490

15.1.1 Electronic Properties of the Iron Site of the FeGP Cofactor 490

15.1.2 Enzyme Reaction Kinetics 491

15.1.3 Hmd Inhibitors and Their Contribution to the Catalytic

Mechanism 492

15.1.3.1 CO and CN- 492

15.1.3.2 Isocyanides 492

15.1.3.3 Cu 493

15.1.3.4 Fe 494

15.1.3.5 H2O2 494

15.1.3.6 O2 is Reduced to H2O2 by the Hmd Reaction 495

15.1.4 Semisynthetic Hmd 496

15.1.4.1 Importance of the 2-OH Group of the Pyridinol Ring 498

15.1.4.2 Semisynthetic [Mn]-Hydrogenase 498

15.1.5 Circular Dichroism Spectroscopy 499

15.1.6 Crystal Structure of Hmd with the Substrate 499

15.1.7 Proposed Catalytic Mechanism of Hmd 500

15.1.8 Conclusion 502

15.2 Toward the Catalytic Mechanism of [FeFe]-Hydrogenase 502

15.2.1 The Active Site Cofactor Is an Iron-Sulfur Cluster 503

15.2.2 The Electronic Structure of the H-cluster 504

15.2.3 Current State of the Catalytic Mechanism of [FeFe]-hydrogenase 507

15.2.4 Toward a Consensus Catalytic Mechanism 511

15.2.5 Conclusion 512

15.3 Catalytic Cycle of [NiFe]-Hydrogenase 512

15.3.1 Classification of [NiFe]-Hydrogenases: The Complex Trait of O2

Tolerance 514

15.3.2 [NiFe]-Hydrogenase Active Site States 516

15.3.2.1 CO-Bound States 517

15.3.2.2 Hydroxy-Bridged States 517

15.3.2.3 Unusual [NiFe] Site Arrangements 519

15.3.3 Catalytic Intermediates 520

15.3.3.1 Nia-S 520

15.3.3.2 Nia-SR 522

15.3.3.3 Nia-C 523

15.3.3.4 Nia-L 524

15.3.4 Conclusions 525

Acknowledgment 525

References 526

16 Macromolecular Crystallography 541

Konstantin Bikbaev and Ingrid Span

Chapter Goals 541

Main Chapter Points 541

16.1 Introduction 542

16.2 Crystallization of Macromolecules 544

16.3 Symmetry and the Unit Cell 548

16.4 Diffraction and Interpretation of Diffraction Patterns 550

16.5 Data Collection and Processing 552

16.6 X-ray structure analysis 554

16.6.1 Isomorphous Replacement 555

16.6.2 Anomalous Diffraction 556

16.6.3 Molecular Replacement 557

16.6.4 Structure Refinement 557

16.7 Time-Resolved Crystallography 562

16.8 Nuances of Fe-S Protein Crystallography 565

16.9 Conclusions 566

References 566

17 Vibrational and Mössbauer Spectroscopic Techniques to Study

Iron-Sulfur Clusters 571

Christian Lorent, Giorgio Caserta, Volker Schünemann, and Ingo Zebger

Chapter Goals 571

Main Chapter Points 571

17.1 Vibrational Spectroscopy 572

17.1.1 Normal Modes 573

17.1.2 Vibrational Spectroscopic Techniques 573

17.2 Infrared Spectroscopy 574

17.2.1 MIR Spectroscopy 575

17.2.2 FIR Spectroscopy 578

17.2.3 Conclusion 579

17.3 Raman Spectroscopy 579

17.3.1 Resonance Raman Spectroscopy 581

17.3.2 Studying [Fe-S] Clusters by Resonance Raman Spectroscopy 582

17.3.3 Rubredoxin 582

17.3.4 [2Fe-2S] Clusters 583

17.3.5 [3Fe-4S] Clusters 585

17.3.6 [4Fe-4S] Clusters 586

17.3.7 Studying Hydrogenases by Resonance Raman Spectroscopy 587

17.3.8 Conclusion 588

17.4 Mössbauer-Based Spectroscopic Techniques 588

17.4.1 Mössbauer Spectroscopy 588

17.4.2 Mössbauer Spectroscopy from Single Fe(S-Cys)4 Sites up to [4Fe-4S]

Clusters 592

17.4.3 Complex Iron-Sulfur Clusters: Hydrogenases and Nitrogenases 595

17.4.4 Conclusion 596

17.5 Nuclear Resonance Vibrational Spectroscopy 596

17.5.1 Theoretical Background 597

17.5.2 [Fe(S-Cys)4] Metal Site: The Case Study of Rubredoxin 599

17.5.3 [2Fe-2S] Clusters: 4xCys, 2xCys-2xHis, and 3xCys-1xHis Ligations 599

17.5.4 [3Fe-4S] Clusters 601

17.5.5 [4Fe-4S] Clusters 602

17.5.6 Binding of NO to [Fe-S] Clusters 602

17.5.7 The Nitrogenase FeMe Cofactor 603

17.5.8 [NiFe]- and [FeFe]-Hydrogenases 605

17.5.9 Conclusion 606

References 606

18 The Multisite Microstate Model: A Theoretical Approach for

Analyzing Charge Transfer in Proteins 617

G. Matthias Ullmann and Rajeev Ranjan Roy

Main Chapter Points 617

18.1 Introduction 617

18.2 Binding of Ligands to a Receptor 620

18.3 Analyzing Biomolecular Systems 622

18.3.1 General Considerations 622

18.3.2 Thermodynamic Analysis 624

18.3.3 Kinetic Analysis 625

18.4 Modeling Protein Electrostatics Using the Poisson-Boltzmann

Equation 626

18.4.1 Conceptual Model 626

18.4.2 The Mathematical Model 627

18.4.3 Electrostatic Potentials and Electrostatic Energies 629

18.4.4 Defining the Low-Dielectric Cavity of the Protein 631

18.4.5 Fitting Quantum Chemical Electrostatic Potentials to Point

Charges 633

18.4.6 Problems and Shortcomings of the Poisson-Boltzmann Model 635

18.5 Electrostatic Calculations of the Energy Parameter 636

18.6 Practical Hints to Construct a Multisite System 639

18.6.1 Molecular Structures as a Basis of Detailed Calculations 639

18.6.2 How to Choose Sites, Model Compounds, and Model Compound

Energies 640

18.7 Conclusions 642

Acknowledgement 643

References 643

19 Structural and Functional Bioinorganic Model Chemistry of

Fe-S Clusters - Synthesis and Analysis 649

Benedict Josua Elvers and Carola Schulzke

Chapter Goals and Main Chapter Points 649

19.1 Introduction 649

19.2 Fe-S Cluster Motifs: Natural Occurrence, Reactivity, and Artificial

Synthesis 652

19.3 [FeS4] 653

19.3.1 Biological Relevance 653

19.3.2 Synthetic Model Complexes 654

19.4 [Fe2S2] Clusters 657

19.4.1 Biological Relevance of [Fe2S2] Clusters 658

19.4.2 Synthetic Model Complexes of [Fe2S2] Clusters 658

19.5 [Fe4S4] and [Fe3S4] Clusters 665

19.5.1 Biological Relevance of [Fe4S4] and [Fe3S4] Clusters 665

19.5.2 Synthetic Model Complexes of [Fe4S4] 667

19.5.3 Synthetic Model Complexes of [Fe3S4] 676

19.6 Clusters of Higher Nuclearity 679

19.6.1 Hydrogenase and Nitrogenase 680

19.6.2 Model Chemistry for Clustersof Higher Nuclearity 683

19.7 Conclusion 691

References 692

20 Metal-Dependent Formate Dehydrogenases and Their

Interplay and Relationship to Iron-Sulfur Clusters 705

Benjamin R. Duffus

Chapter Goals 705

Main Chapter Points 705

20.1 Formate: General Considerations 706

20.2 Metal-Independent FDHs 707

20.3 Metal-Dependent FDHs 708

20.4 Metal-Dependent Formate Dehydrogenases: Common Modular Catalytic

Unit 711

20.5 FDH and Link of bis-MGD to a [4Fe-4S] Cluster 712

20.6 Link of the FDH bis-MGD Cofactor with Extended Fe-S Cluster Electron

Chains 714

20.7 FDH that Employ Ferredoxin as Electron Acceptor 715

20.8 E. coli Metal-Dependent Formate Dehydrogenases 715

20.9 Formate Hydrogenlyase Complex 716

20.10 NAD+-Reducing, Metal-Dependent FDHs 717

20.11 W-Containing FDHs from Sulfate-Reducing Bacteria 719

20.12 FDH: D. vulgaris Hildenborough 719

20.13 Tungsten vs. Molybdenum FDH 720

20.14 Metal-Dependent Formate Dehydrogenase from Moorella thermoacetica:

Variance and Codependence of Metal Ions 721

20.15 Formylmethanofuran Dehydrogenases 721

20.16 FDHs in Methanogens 722

20.17 FDH O2 Sensitivity: Inhibition and Enzymatic Activation 724

20.18 FDH and Electron Bifurcation vs. O2 Tolerance 725

20.19 FDH in H2-Dependent CO2 Reduction (HDCR) 727

20.20 Conclusion 728

Acknowledgments 729

References 729

Index 747

最近チェックした商品