Electronic Processes in Organic Semiconductors : An Introduction (1. Auflage. 2015. XIV, 406 S. 244 mm)

個数:
電子版価格
¥11,907
  • 電書あり
  • ポイントキャンペーン

Electronic Processes in Organic Semiconductors : An Introduction (1. Auflage. 2015. XIV, 406 S. 244 mm)

  • ウェブストア価格 ¥17,219(本体¥15,654)
  • WILEY-VCH(2015発売)
  • 外貨定価 EUR 75.90
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 312pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • ウェブストア価格 ¥14,983(本体¥13,621)
  • WILEY-VCH(2015発売)
  • 外貨定価 UK£ 64.95
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 272pt
  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783527332922

Full Description

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism.
Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.

Contents

Preface XI

Table of Boxes XIII

1 The Electronic Structure of Organic Semiconductors 1

1.1 Introduction 1

1.1.1 What Are "Organic Semiconductors"? 1

1.1.2 Historical Context 3

1.2 Different Organic Semiconductor Materials 5

1.2.1 Molecular Crystals 5

1.2.2 Amorphous Molecular Films 7

1.2.3 Polymer Films 9

1.2.4 Further Related Compounds 14

1.2.5 A Comment on Synthetic Approaches 15

1.3 Electronic States of a Molecule 17

1.3.1 Atomic Orbitals in Carbon 17

1.3.2 From Atomic Orbitals to Molecular Orbitals 19

1.3.3 From Orbitals to States 25

1.3.4 Singlet and Triplet States 28

1.4 Transitions between Molecular States 31

1.4.1 The Potential Energy Curve 31

1.4.2 Radiative Transitions: Absorption and Emission 37

1.4.3 A Classical Picture of Light Absorption 48

1.4.4 Non-Radiative Transitions: Internal Conversion and Intersystem Crossing 56

1.4.5 Basic Photophysical Parameters: Lifetimes and Quantum Yields 62

1.5 Spectroscopic Methods 64

1.5.1 Photoluminescence Spectra, Lifetimes, and Quantum Yields 67

1.5.2 Excited State Absorption Spectra 75

1.5.3 Fluorescence Excitation Spectroscopy 79

1.6 Further Reading 80

References 81

2 Charges and Excited States in Organic Semiconductors 87

2.1 Excited Molecules from the Gas Phase to the Amorphous Film 87

2.1.1 Effects due to Polarization 87

2.1.2 Effects due to Statistical Averaging 91

2.1.3 Effects due to Environmental Dynamics 94

2.1.4 Effects due to Electronic Coupling between Identical Molecules - Dimers and Excimers 99

2.1.5 Effects due to Electronic Coupling between Dissimilar Molecules - Complexes and Exciplexes 111

2.1.6 Electromers and Electroplexes 113

2.2 Excited Molecules in Crystalline Phases - The Frenkel Exciton 114

2.2.1 The Frenkel Exciton Concept for One Molecule per Unit Cell 114

2.2.2 The Frenkel Exciton Concept for Two Molecules per Unit Cell 117

2.2.3 Coherent and Incoherent Motion of Frenkel Excitons 118

2.2.4 Förster and Dexter Type Energy Transfer 119

2.2.5 Experimental Examples for Frenkel Excitons in Ordered Molecular Arrays 123

2.3 Excited States in π-Conjugated Polymers 133

2.3.1 Crystalline Polymers: Poly(diacetylene)s (PDAs) 133

2.3.2 Concepts for Noncrystalline Polymers 136

2.3.3 Brief Overview Over Different Classes of Conjugated Polymers 144

2.4 Charged Molecules 155

2.4.1 The Creation of Charged Molecules by Injection, Absorption and Doping 157

2.4.2 Charged Molecules in Disordered Films 161

2.4.3 Charged Molecules in Crystals 164

2.4.4 Determining the Energy Levels of Charged Molecules by Cyclovoltammetry and Photoemission Spectroscopy 167

2.5 A Comparison between Inorganic and Organic Semiconductors 171

2.5.1 Crystals 171

2.5.2 Amorphous Solids 174

2.5.3 The Su-Schrieffer-Heeger (SSH) Model for Conjugated Polymers 175

2.6 Further Reading 181

References 182

3 Electronic and Optical Processes of Organic Semiconductors 193

3.1 Basic Aspects of Electrical Current in a Device 194

3.1.1 Injection Limited Currents 195

3.1.2 Unipolar Space Charge Limited (SCL) Current 196

3.1.3 Bipolar Space Charge Limited Current 200

3.2 Charge Injection Mechanisms 201

3.2.1 Fowler-Nordheim Tunneling Injection 202

3.2.2 Richardson-SchottkyThermionic Injection 203

3.2.3 Thermally Activated Injection into a Disordered Organic Semiconductor 204

3.3 Charge Carrier Transport 208

3.3.1 Experimental Techniques to Measure Charge Carrier Mobility 208

3.3.2 Carrier Transport in the Band Regime and in the Hopping Regime 213

3.3.3 Trapping Effects 235

3.3.4 Transport at Higher Charge Carrier Densities 237

3.3.5 The Impact of Morphology on Transport 239

3.3.6 Charge Transport on Short Lengths Scales and Time Scales 244

3.4 Non-Geminate Charge Carrier Recombination 246

3.4.1 Recombination without Traps (Langevin-Type Recombination) 246

3.4.2 Recombination with Traps (Shockley-Read-Hall-Like Recombination) 247

3.5 Generation of Excitations 249

3.5.1 Optical Generation 249

3.5.2 Electrical Generation 251

3.5.3 Secondary Processes 252

3.6 Dissociation of Excitations 254

3.6.1 Geminate Pair Creation 254

3.6.2 The Dissociation of the Geminate Pair 263

3.7 Diffusion of Excitations 274

3.7.1 Exciton Diffusion in a Molecular Crystal 274

3.7.2 Diffusion of Excitations in Amorphous Condensed Phases 276

3.7.3 Experimental Techniques to Measure Exciton Diffusion 276

3.8 Decay of Excitations 283

3.8.1 Monomolecular Decay 283

3.8.2 Bimolecular Processes 287

3.9 Further Reading 292

References 292

4 Fundamentals of Organic Semiconductor Devices 307

4.1 Basic Solar Cells and Light-Emitting Diode Structures 311

4.1.1 Basic Fabrication Steps 311

4.1.2 Electrode Geometries 315

4.1.3 The Basic Operation of a Single-Layer OLED 317

4.1.4 Multi-Layer OLED Architectures 322

4.1.5 The Current-Voltage-Luminance Characteristics of an OLED 324

4.1.6 The Basic Operation of an OSC 326

4.1.7 The Current-Voltage Characteristics of an OSC 327

4.2 Solar Cell Performance 331

4.2.1 Determining Solar Cell Efficiencies 331

4.2.2 Strategies to Increase the Photocurrent 334

4.2.3 Strategies to Increasing the Open-Circuit Voltage 345

4.2.4 Strategies to Improve the Fill-Factor 347

4.2.5 The Thermodynamic Efficiency Limit 349

4.3 Light-Emitting Diode Performance 353

4.3.1 Determining OLED Efficiencies and Color 353

4.3.2 Strategies to Improve the OLED Efficiencies 362

4.3.3 Strategies to Improving the Emission Color of OLEDs 366

4.4 Transistors 368

4.4.1 The Operational Principle of an OFET 369

4.4.2 Evaluating OFET Performance 373

4.4.3 Improving OFET Performance 374

4.4.4 Modifying the Polarity of OFETs 378

4.5 Further Reading 382

References 382

Appendices 389

Chemical Structures 389

A.1 Selected Polymers 390

A.1.1 π-Conjugated Homopolymers 390

A.1.2 π-Conjugated Copolymers 391

A.1.3 Other Polymers of Interest 392

A.2 Selected π-Conjugated Low-MolecularWeight Compounds 393

A.3 Selected Phosphorescent Compounds 397

A.4 Non-Conjugated Low-MolecularWeight Compounds 397

Index 399