神経細胞の生物物理学<br>Physics of Nerves and Excitatory Membranes (1. Auflage. 2026. 512 S. 244 mm)

個数:
電子版価格
¥17,476
  • 予約
  • 電子版あり

神経細胞の生物物理学
Physics of Nerves and Excitatory Membranes (1. Auflage. 2026. 512 S. 244 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 512 p.
  • 商品コード 9783527331802

Full Description

Ground-breaking reference explaining the biological properties of nerve cell membranes from a unifying physical perspective

Without neglecting the known theories of nerve impulse propagation, Physics of Nerves and Excitatory Membranes focuses on the less known features of nerve cell membranes, such as their mechanical, caloric and optical properties. Based on these properties, the author then develops an electromechanical theory of pulse propagation, offering the most plausible explanation yet for some unresolved questions regarding the effects observed during general anesthesia.

Physics of Nerves and Excitatory Membranes is didactically written and includes information on:

The structure and electrical properties of nerves, dimensions and mechanical properties of the nerve pulse, and optical changes during the action potential
Cable theory, voltage gating, the Hodgkin-Huxley model, and protein ion channels
Membrane structure and melting, phase behavior, domains, and rafts, and the influence of pressure, voltage, drugs, proteins, pH, and ionic strength
Heat capacity, sound propagation, relaxation timescales, and capacitance and capacitive susceptibility
The emergence of solitary nerve pulses in a biological membrane under physiological conditions
Voltage-gated and mechanosensitive lipid channels, temperature sensing, and selectivity of lipid channels

Physics of Nerves and Excitatory Membranes is of prime interest for biophysicists studying biomembranes as well as for neurobiologists and clinical researchers studying anesthesia. Its accessible style makes it very well suited for teaching the subjects that it covers.

Contents

Part I: INTRODUCTION
I.1 Early Nerve Studies
I.2 The early period of electrophysiology
I.3 The Hodgkin-Huxley model and beyond
I.4 Another line of thought
I.5 Scope of this book
Part II: THERMODYNAMICS
II.1 Fundamental laws in thermodynamics
II.2 Some statistical Thermodynamics
II.3 Entropy
II.4 The fluctuation relations
Part III: PROPERTIES OF NERVES
III.1 Structure of nerves
III.2 Electrical properties of nerves
III.3 The dimensions of the nerve pulse
III.4 Mechanical properties of the nerve pulse
III.5 Optical changes during the action potential
III.6 Heat production and temperature changes during the nerve pulse
III.7 Magnetic fields generated during the action potential
III.8 Collisions of nerve pulses
Part IV: BASIC PRINCIPLES OF ELECTROPHYSIOLOGY
IV.1 Some historical considerations
IV.2 Cable theory
IV.3 Voltage Gating
IV.4 The Hodgkin-Huxley model
IV.5 Implications of the Hodgkin-Huxley model
Part V: PROPERTIES OF ARTIFICIAL AND BIOLOGICAL MEMBRANES
V.1 Membrane Structure
V.2 Membrane Melting
V.3 Phase behavior, domains and rafts
V.4 Influence of hydrostatic pressure and lateral pressure
V.5 Curvature
V.6 Influence of pH and ionic strength
V.7 Influence of Voltage
V.8 Influence of Drugs and proteins
Part VI: FLUCTUATIONS AND SUSCEPTIBILITIES
VI.1 Entropy and fluctuations
VI.2 Heat capacity
VI.3 Relation between enthalpy, volume and area changes
VI.4 Transitions and elastic constants
VI.5 Sound propagation
VI.6 Capacitance and capacitive susceptibility
VI.7 Relaxation timescales
Part VII: THE SOLITON THEORY
VII.1 Hydrodynamics and sound propagation
VII.2 Sound velocity in nerve membranes
VII.3 The frequency dependence of the sound velocity
VII.4 The nerve pulse as an electromechanical soliton
VII.5 Nerve contraction and pulse trains
VII.6 Excitation of solitons
VII.7 Pulse collisions
VII.8 Pulses on monolayers
Part VIII: CHANNELS
VIII.1 The permeability of lipid membranes
VIII.2 Voltage-gated lipid channels
VIII.3 Mechanosensitive lipid channels
VIII.4 Temperature sensing
VIII.5 The influence of drugs on membrane permeability and lipid ion channels
VIII.6 Channel lifetimes
VIII.7 Selectivity of lipid channels
VIII.8 Proteins as catalysts for lipid channel formation
Part IX: MEDICAL CONSEQUENCES
IX.1 Anesthesia
IX.2 Adaptation
IX.3 Nerve Stretching
IX.4 Tremor and lithium
IX.5 Ultrasound neurostimulation

最近チェックした商品