高分子表面のプラズマ化学<br>The Plasma Chemistry of Polymer Surfaces : Advanced Techniques for Surface Design (1. Auflage. 2012. XII, 468 S. 150 SW-Abb. 240 mm)

個数:
電子版価格
¥27,635
  • 電子版あり

高分子表面のプラズマ化学
The Plasma Chemistry of Polymer Surfaces : Advanced Techniques for Surface Design (1. Auflage. 2012. XII, 468 S. 150 SW-Abb. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 480 p.
  • 商品コード 9783527318537

Full Description

More than 99% of all visible matter in the universe occurs as highly ionized gas plasma with high energy content. Electrical low- and atmospheric-pressure plasmas are characterized by continuous source of moderate quantities of energy or enthalpy transferred predominantly as kinetic energy of electrons. Therefore, such energetically unbalanced plasmas have low gas temperature but produce sufficient energy for inelastic collisions with atoms and molecules in the gas phase, thus producing reactive species and photons, which are able to initiate all types of polymerizations or activate any surface of low reactive polymers. However, the broadly distributed energies in the plasma exceed partially the binding energies in polymers, thus initiating very often unselective reactions and polymer degradation. The intention of this book is to present new plasma processes and new plasma reactions of high selectivity and high yield. This book aims to bridge classical and plasma chemistry, particularly focusing on polymer chemistry in the bulk and on the surface under plasma exposure.
The stability of surface functionalization and the qualitative and quantitative measurement of functional groups at polymer surface are featured prominently, and chemical pathways for suppressing the undesirable side effects of plasma exposure are proposed and illustrated with numerous examples. Special attention is paid to the smooth transition from inanimate polymer surfaces to modified bioactive polymer surfaces. A wide range of techniques, plasma types and applications are demonstrated.

Contents

Preface XI 1 Introduction 1 References 9 2 Interaction between Plasma and Polymers 11 2.1 Special Features of Polymers 11 2.2 Processes on Polymer Surfaces during Plasma Exposure 14 2.3 Influence of Polymer Type 23 2.4 Methods, Systematic, and Definitions 24 2.4.1 Surface Modifi cation (Functionalization) 25 2.4.2 Coating of Polymer Surfaces with Functional Group-Bearing Plasma Polymers 26 2.4.2.1 Plasma-Chemical Polymerization 26 2.4.2.2 Pulsed-Plasma Polymerization 27 2.4.3 Other Polymer Process 28 2.4.3.1 Polymer Etching 28 2.4.3.2 Crosslinking 29 2.5 Functional Groups and Their Interaction with Other Solids 29 References 31 3 Plasma 35 3.1 Plasma State 35 3.2 Types of Low-Pressure Glow Discharges 45 3.3 Advantages and Disadvantages of Plasma Modification of Polymer Surfaces 48 3.4 Energetic Situation in Low-Pressure Plasmas 49 3.5 Atmospheric and Thermal Plasmas for Polymer Processing 50 3.6 Polymer Characteristics 51 3.7 Chemically Active Species and Radiation 53 References 53 4 Chemistry and Energetics in Classic and Plasma Processes 55 4.1 Introduction of Plasma Species onto Polymer Surfaces 55 4.2 Oxidation by Plasma Fluorination and by Chemical Fluorination 64 4.3 Comparison of Plasma Exposure, Ionizing Irradiation, and Photo-oxidation of Polymers 65 References 67 5 Kinetics of Polymer Surface Modification 69 5.1 Polymer Surface Functionalization 69 5.1.1 Kinetics of Surface Functionalization 69 5.1.2 Unspecific Functionalizations by Gaseous Plasmas 72 5.2 Polymer Surface Oxidation 72 5.2.1 Polyolefins 72 5.2.2 Aliphatic Self-Assembled Monolayers 73 5.2.3 Polyethylene 75 5.2.4 Polypropylene 78 5.2.5 Polystyrene 79 5.2.6 Polycarbonate 85 5.2.7 Poly(ethylene terephthalate) 86 5.2.8 Summary of Changes at Polymer Surfaces on Exposure to Oxygen Plasma 94 5.2.9 Categories of General Behavior of Polymers on Exposure to Oxygen Plasma 97 5.2.10 Role of Contaminations at Polymer Surfaces 100 5.2.11 Dependence of Surface Energy on Oxygen Introduction 102 5.3 Polymer Surface Functionalization with Amino Groups 103 5.3.1 Ammonia Plasma Treatment for Introduction of Amino Groups 103 5.3.2 Side Reactions 109 5.3.3 Instability Caused by Post-Plasma Oxidation 110 5.3.4 Exposure of Self-Assembled (SAM) and Langmuir Blodgett (LB) Monolayers to Ammonia Plasma 111 5.3.5 XPS Measurements of Elemental Compositions 112 5.3.6 ToF-SIMS Investigations 114 5.3.7 ATR-FTIR 115 5.3.8 CHN Analysis 117 5.3.9 NMR 118 5.3.10 Discussion of Hydrogenation and Amination of Polyolefi ns by Ammonia Plasma 120 5.4 Carbon Dioxide Plasmas 123 5.5 SH-Forming Plasmas 126 5.6 Fluorinating Plasmas 126 5.7 Chlorination 134 5.8 Polymer Modifi cation by Noble Gas Plasmas 136 References 139 6 Bulk, Ablative, and Side Reactions 145 6.1 Changes in Supermolecular Structure of Polymers 145 6.2 Polymer Etching 151 6.3 Changes in Surface Topology 155 6.4 Plasma Susceptibility of Polymer Building Blocks 158 6.5 Plasma UV Irradiation 160 6.6 Absorption of Radiation by Polymers 162 6.7 Formation of Unsaturations 165 6.8 Formation of Macrocycles 169 6.9 Polymer Degradation and Supermolecular Structure of Polymers 171 6.10 Crosslinking versus Degradation of Molar Masses 175 6.11 Radicals and Auto-oxidation 177 6.12 Plasma-Induced Photo-oxidations of Polymers 181 6.13 Different Degradation Behavior of Polymers on Exposure to Oxygen Plasma 181 6.14 Derivatization of Functional Groups for XPS 185 References 193 7 Metallization of Plasma-Modified Polymers 197 7.1 Background 197 7.2 Polymer Plasma Pretreatment for Well Adherent Metal Polymer Composites 198 7.2.1 Surface Cleaning by Plasma for Improving Adhesion 199 7.2.2 Oxidative Plasma Pretreatment of Polymers for Adhesion Improvement 202 7.2.3 Reductive Plasma Pretreatment of Perfluorinated Polymers 207 7.2.4 Adhesion Improvement Using Homo- and Copolymer Interlayers 210 7.3 New Adhesion Concept 213 7.4 Redox Reactions along the Interface 220 7.5 Influence of Metal Polymer Interactions on Interface-Neighbored Polymer Interphases 224 7.6 Metal-Containing Plasma Polymers 227 7.7 Plasma-Initiated Deposition of Metal Layers 228 7.8 Inspection of Peeled Surfaces 228 7.9 Life Time of Plasma Activation 229 References 234 8 Accelerated Plasma-Aging of Polymers 239 8.1 Polymer Response to Long-Time Exposure to Plasmas 239 8.2 Hydrogen Plasma Exposure 244 8.3 Noble Gas Plasma Exposure, CASING 247 References 247 9 Polymer Surface Modifications with Monosort Functional Groups 249 9.1 Various Ways of Producing Monosort Functional Groups at Polyolefin Surfaces 249 9.2 Oxygen Plasma Exposure and Post-Plasma Chemical Treatment for Producing OH Groups 251 9.3 Post-Plasma Chemical Grafting of Molecules, Oligomers, or Polymers 256 9.3.1 Grafting onto OH Groups 256 9.3.2 Grafting onto NH2 Groups 257 9.3.3 Grafting onto COOH-Groups 258 9.4 Selective Plasma Bromination for Introduction of Monosort C Br Bonds to Polyolefin Surfaces 258 9.4.1 General Remarks 258 9.4.2 History of the Plasma Bromination Process 260 9.4.3 Theoretical Considerations on the Plasma Bromination Process 260 9.4.4 Bromination Using Bromoform or Bromine Plasmas 265 9.4.5 Bromination Using Allyl Bromide Plasma 269 9.4.6 Grafting onto Bromine Groups 271 9.4.7 Yield in Density of Grafted Molecules at Polyolefin Surfaces 272 9.4.8 Change of Surface Functionality 277 9.4.9 Surface Bromination of Polyolefins: Conclusions 279 9.4.10 Bromination of Poly(ethylene terephthalate) 280 9.5 Functionalization of Graphitic Surfaces 281 9.5.1 Bromination with Bromine Plasma 281 9.5.2 Dependence of Bromination Rate on Plasma Parameters 286 9.5.3 Alternative Plasma Bromination Precursors 287 9.5.4 Efficiency in Bromination of Carbon and Polymer Materials 288 9.5.5 Grafting of Amines to Brominated Surfaces 288 9.5.6 Refunctionalization to OH Groups 289 9.5.7 NH2 Introduction onto Carbon Surfaces 289 9.6 SiOx Deposition 292 9.7 Grafting onto Radical Sites 294 9.7.1 Types of Produced Radicals 295 9.7.2 Grafting onto C-Radical Sites 295 9.7.3 Post-Plasma Quenching of Radicals 296 9.7.4 Grafting on Peroxide Radicals 296 9.7.5 Plasma Ashing 297 References 297 10 Atmospheric-Pressure Plasmas 303 10.1 General 303 10.2 Dielectric Barrier Discharge (DBD) Treatment 304 10.3 Polymerization by Introduction of Gases, Vapors, or Aerosols into a DBD 311 10.4 Introduction of Polymer Molecules into the Atmospheric-Pressure Plasma and Their Deposition as Thin Polymer Films (Aerosol-DBD) 312 10.5 DBD Treatment of Polyolefi n Surfaces for Improving Adhesion in Metal Polymer Composites 320 10.6 Electrospray Ionization (ESI) Technique 321 10.6.1 ESI + Plasma 327 10.6.2 ESI without Plasma 328 10.6.3 Comparison of Aerosol-DBD and Electrospray 329 10.6.4 Topography 330 10.6.5 Electrophoretic Effect of ESI 333 References 333 11 Plasma Polymerization 337 11.1 Historical 337 11.2 General Intention and Applications 340 11.3 Mechanism of Plasma Polymerization 341 11.3.1 Plasma-Induced Radical Chain-Growth Polymerization Mechanism 342 11.3.2 Ion Molecule Reactions 344 11.3.3 Fragmentation (Poly)recombination ( Plasma Polymerization ) 344 11.4 Plasma Polymerization in Adsorption Layer or Gas Phase 345 11.5 Side-Reactions 346 11.6 Quasi-hydrogen Plasma 348 11.7 Kinetic Models Based on Ionic Mechanism 351 11.8 Kinetic Models of Plasma-Polymer Layer Deposition Based on a Radical Mechanism 353 11.9 Dependence on Plasma Parameter 358 11.10 Structure of Plasma Polymers 361 11.11 Afterglow (Remote or Downstream) Plasmas 364 11.12 Powder Formation 366 11.13 Plasma Catalysis 367 11.14 Copolymerization in Continuous-Wave Plasma Mode 368 References 370 12 Pulsed-Plasma Polymerization 377 12.1 Introduction 377 12.2 Basics 377 12.3 Presented Work on Pulsed-Plasma Polymerization 381 12.4 Role of Monomers in Pulsed-Plasma Polymerization 382 12.5 Dark Reactions 384 12.6 Pressure-Pulsed Plasma 385 12.7 Differences between Radical and Pulsed-Plasma Polymerization 389 12.8 Surface Structure and Composition of Pulsed-Plasma Polymers 391 12.9 Plasma-Polymer Aging and Elimination of Radicals in Plasma Polymers 401 12.10 Functional Groups Carrying Plasma-Polymer Layers 403 12.10.1 Allyl Alcohol 403 12.10.2 Allylamine 413 12.10.3 Acrylic Acid 416 12.10.4 Acrylonitrile 421 12.11 Vacuum Ultraviolet (VUV) Induced Polymerization 422 12.12 Plasma-Initiated Copolymerization 424 12.12.1 Reasons for Copolymerization 424 12.12.2 Copolymer Kinetics 427 12.12.3 Allyl Alcohol Copolymers with Ethylene, Butadiene, and Acetylene 427 12.12.4 Allyl Alcohol Copolymers with Styrene 434 12.12.5 Acrylic Acid 443 12.12.6 Copolymers with Allylamine 445 12.13 Graft Polymerization 447 12.14 Grafting onto Functional Groups 450 References 451 Index 457

最近チェックした商品