生物無気化学II<br>Highlights in Bioorganic Chemistry : Methods and Apllications. Forew. by Ronald Breslow (2004. XXVIII, 572 S. w. 219 figs. 24 cm)

個数:

生物無気化学II
Highlights in Bioorganic Chemistry : Methods and Apllications. Forew. by Ronald Breslow (2004. XXVIII, 572 S. w. 219 figs. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 600 p., 200 figs.
  • 商品コード 9783527306565

基本説明

An introduction.

Full Description


This is a fascinating introduction to the topic. Spanning the spectrum of nucleic acid chemistry, carbohydrates, peptides, molecular recognition, biosynthesis and natural biosynthesis, right up to medical and biophysical chemistry, the book provides advanced students and those already working in the field with a balanced overview. In more than 30 contributions, a new generation of recognized scientists gives an account of the latest research in such areas as artificial receptors for the stabilization of beta sheet structures; carbohydrate recognition by artificial receptors; combinatorial chemistry as a tool for the discovery of catalysts; the interaction of NO and peroxynitrite with hemoglobin and myoglobin; inhibitors against human mast cell tryptase as a potential approach to conquering asthma; and, the selectivity of DNA replication. It is a readily accessible survey for everyone wishing to stay abreast of developments. It features a foreword by Ronald Breslow.

Table of Contents

Foreword                                           v
Preface vii
List of Contributors xxiii
Part 1 Biomolecules and their Conformation 1 (106)
1.1 Equilibria of RNA Secondary Structures 3 (15)
Ronald Micura and Claudia Hobartner
1.1.1 Introduction 3 (4)
1.1.1.1 RNA Folding 3 (1)
1.1.1.2 One Sequence - Two Ribozymes 4 (1)
1.1.1.3 Nucleoside Methylation is 5 (2)
Responsible for Correct Folding of a
Human Mitochondrial tRNA
1.1.2 Monomolecular RNA Two-state 7 (4)
Conformational Equilibria
1.1.3 The Influence of Nucleobase 11 (3)
Methylations on Secondary Structure
Equilibria, as Exemplified by the
Ribosomal Helix 45 Motif
1.1.4 Structural Probing of Small RNAs by 14 (1)
Comparative Imino Proton NMR Spectroscopy
Acknowledgments 15 (1)
References 15 (3)
1.2 Synthesis and Application of Proline and 18 (13)
Pipecolic Acid Derivatives: Tools for
Stabilization of Peptide Secondary Structures
Wolfgang Maison
1.2.1 Introduction 18 (2)
1.2.2 syn- and anti-Proline Mimics 20 (5)
1.2.3 Templates for α-Helix 25 (3)
Stabilization
References 28 (1)
B.1 Proline syn-anti Isomerization, 29 (2)
Implications for Protein Folding
Wolfgang Maison
1.3 Stabilization of Peptide Microstructures 31 (17)
by Coordination of Metal Ions
Markus Albrecht
1.3.1 Introduction 31 (3)
1.3.2 Dinuclear Coordination Compounds 34 (5)
from Amino Acid-bridged Dicatechol
Ligands: Induction of a Right- or a
Left-handed Conformation at a Single
Amino Acid Residue
1.3.3 Peptide-bridged Dicatechol Ligands 39 (2)
for Stabilization of Linear Compared with
Loop-type Peptide Conformations
1.3.4 Approaches Used to Stabilize 41 (2)
Bioactive Conformations at Peptides by
Metal Coordination
1.3.5 Conclusions 43 (1)
References 43 (1)
B.2 Conformational Analysis of Proteins: 44 (2)
Ramachandran's Method
Markus Albrecht
B.3 Metals in Proteins - Tools for the 46 (2)
Stabilization of Secondary Structures and
as Parts of Reaction Centers
Markus Albrecht
1.4 Conformational Restriction of 48 (15)
Sphingolipids
Thomas Kolter
Summary 48 (1)
1.4.1 Introduction 48 (3)
1.4.1.1 Lipids 48 (1)
1.4.1.2 Sphingolipids 49 (1)
1.4.1.3 Signal Transduction 50 (1)
1.4.2 Conformational Restriction 51 (3)
1.4.2.1 Peptidomimetics 51 (1)
1.4.2.2 Conformationally Restrained 52 (2)
Lipids
1.4.3 Conformational Restriction of 54 (1)
Sphingolipids
1.4.3.1 Rationale 54 (1)
1.4.3.2 Present State of Knowledge 54 (1)
1.4.4 Target Compounds 55 (2)
1.4.4.1 Synthesis 55 (1)
1.4.4.2 Analysis in Cultured Cells 55 (2)
1.4.5 Discussion 57 (1)
1.4.6 Outlook 58 (1)
References 59 (1)
B.4 Lipids 60 (3)
Thomas Kolter
1.5 β-Amino Acids in Nature 63 (27)
Franz von Nussbaum and Peter Spiteller
1.5.1 Introduction 63 (1)
1.5.2 β-Amino Acids and their 64 (1)
Metabolites in Nature - Taxonomy of the
Producer Organisms
1.5.3 Common β-Amino Acids - 64 (6)
Nomenclature
1.5.3.1 β-Alanine 64 (5)
1.5.3.2 Seebach's Nomenclature for 69 (1)
β-Amino Acids
1.5.3.3 (R)- and 70 (1)
(S)-β-Aminoisobutyric Acid
[(R)-β-AiB and (S)-β-AiB]
1.5.4 β-Amino Acids Related to 70 (6)
Proteinogenic α-Amino Acids
1.5.4.1 Aliphatic β-Amino Acids - 70 (2)
β-Lysine, β-Leucine,
β-Arginine, and β-Glutamate
1.5.4.2 Aromatic β-Amino Acids - 72 (4)
β-Phenylalanine, β-Tyrosine,
and β-3,4-Dihydroxyphenylalanine
1.5.5 Miscellaneous β-Amino Acids 76 (4)
1.5.5.1 β-Amino-L-alanine (L-Dap) 76 (1)
1.5.5.2 β-Amino Acids Related to 76 (3)
Cyanobacteria - Aboa, Adda, Admpa,
Ahda, Ahmp, Ahoa, Amba, Amha, Amoa,
Aoya, L-Apa, and Map
1.5.5.3 Cispentacin as a Chemical Lead 79 (1)
Structure - Interaction of β-Amino
Acids with Natural α-Amino
Acid-processing Systems
1.5.6 Limiting the β-Amino Acid 80 (1)
Concept
1.5.7 Conclusion 80 (1)
Dedication 81 (1)
Acknowledgment 81 (1)
References 81 (9)
1.6 Biosynthesis of β-Amino Acids 90 (17)
Peter Spiteller and Franz von Nussbaum
1.6.1 Introduction 90 (1)
1.6.2 Biosynthesis of β-Amino Acids 90 (3)
by Catabolic Pathways
1.6.2.1 β-Alanine 90 (1)
1.6.2.2 Biosynthesis of β-Alanine 91 (1)
from Uracil
1.6.2.3 Biosynthesis of β-Alanine 92 (1)
from L-Aspartic Acid
1.6.2.4 Biosynthesis of β-Alanine 92 (1)
from Spermidine and Spermine
1.6.2.5 (R)- and 93 (1)
(S)-β-Aminoisobutyrate
1.6.3 Biosynthesis of β-Amino Acids 93 (7)
by Aminomutases
1.6.3.1 (S)-β-Lysine 93 (1)
1.6.3.2 Properties of the Enzyme 94 (1)
1.6.3.3 Stereochemical Aspects 94 (1)
1.6.3.4 Reaction Mechanism 94 (3)
1.6.3.5 (R)-β-Leucine 97 (1)
1.6.3.6 (S)-β-Arginine 97 (1)
1.6.3.7 (R)-β-Phenylalanine 98 (1)
1.6.3.8 β-Tyrosine 99 (1)
1.6.4 Other Aminomutases 100 (2)
1.6.4.1 β-Lysine 5,6-Aminomutase 101 (1)
(D-Lysine 5,6-Aminomutase)
1.6.4.2 D-Ornithine 4,5-Aminomutase 102 (1)
1.6.5 Discussion 102 (2)
Dedication 104 (1)
Acknowledgment 104 (1)
References 104 (3)
Part 2 Non-Covalent Intermolecular Interactions 107 (108)
2.1 Carbohydrate Recognition by Artificial 109 (15)
Receptors
Arne L zen
2.1.1 Introduction 109 (1)
2.1.2 Design Principles and Binding 109 (3)
Motifs of Existing Receptors
2.1.3 Design, Synthesis, and Evaluation 112 (5)
of Self-assembled Receptors
2.1.4 Conclusions and Perspectives 117 (1)
References 118 (1)
B.5 Molecular Basis of Protein-Carbohydrate 119 (5)
Interactions
Arne Lutzen, Valentin Wittmann
2.2 Cyclopeptides as Macrocyclic Host 124 (16)
Molecules for Charged Guests
Stefan Kubik
2.2.1 Introduction 124 (1)
2.2.2 Cation Recognition 124 (7)
2.2.3 Anion Recognition 131 (4)
Acknowledgment 135 (1)
References 136 (1)
B.6 Ion Transport Across Biological 137 (3)
Membranes
Stefan Kubik
2.3 Bioorganic Receptors for Amino Acids and 140 (15)
Peptides: Combining Rational Design with
Combinatorial Chemistry
Carsten Schmuck, Wolfgang Wienand, and Lars
Geiger
2.3.1 Concept 140 (3)
2.3.2 Structural and Thermodynamic 143 (2)
Characterization of the New Binding Motif
2.3.3 Selective Binding of Amino Acids 145 (2)
2.3.4 Binding of Small Oligopeptides 147 (4)
2.3.5 Conclusion 151 (1)
References 152 (1)
B.7 The Effect of Solvents on the Strength 153 (2)
of Hydrogen Bonds
Carsten Schmuck
2.4 Artificial Receptors for the 155 (17)
Stabilization of β-Sheet Structures
Thomas Schrader, Markus Wehner, and Petra
Rzepecki
2.4.1 β-Sheet Recognition in Nature 155 (1)
2.4.2 Artificial β-Sheets and 156 (1)
Recognition Motifs
2.4.3 Sequence-selective Recognition of 157 (4)
Peptides by Aminopyrazoles
2.4.4 Recognition of Larger Peptides with 161 (4)
Oligomeric Aminopyrazoles
2.4.5 Recognition of Proteins with 165 (2)
Aminopyrazoles
References 167 (2)
B.8 Secondary Structures of Proteins 169 (3)
Thomas Schrader
2.5 Evaluation of the DNA-binding Properties 172 (19)
of Cationic Dyes by Absorption and Emission
Spectroscopy
Helko Ihmels, Katja Faulhaber, and
Giampietro Viola
2.5.1 Introduction 172 (1)
2.5.2 Binding Modes 173 (2)
2.5.2.1 Groove Binding 174 (1)
2.5.2.2 Intercalation 175 (1)
2.5.3 Evaluation of the Binding 175 (11)
2.5.3.1 UV-Visible Spectroscopy 176 (3)
2.5.3.2 Emission Spectroscopy 179 (1)
2.5.3.3 CD Spectroscopy 180 (3)
2.5.3.4 LD Spectroscopy 183 (3)
Acknowledgment 186 (1)
References 186 (2)
B.9 Binding of Small Molecules to DNA - 188 (3)
Groove Binding and Intercalation
Helko Ihmels, Carsten Schmuck
2.6 Interaction of Nitrogen Monoxide and 191 (12)
Peroxynitrite with Hemoglobin and Myoglobin
Susanna Herold
2.6.1 Biosynthesis, Reactivity, and 191 (1)
Physiological Functions of Nitrogen
Monoxide
2.6.1.1 The Biological Chemistry of 192 (1)
Peroxynitrite
2.6.2 Interaction of Nitrogen Monoxide 192 (5)
and Peroxynitrite with Hemoglobin and
Myoglobin
2.6.2.1 The NOキ-mediated Oxidation of 193 (2)
Oxymyoglobin and Oxyhemoglobin
2.6.2.2 The Peroxynitrite-mediated 195 (2)
Oxidation of OxyMb and OxyHb
2.6.3 NOキ as an Antioxidant 197 (2)
2.6.3.1 The NOキ-mediated Reduction of 197 (2)
FerrylMb and FerrylHb
2.6.4 Conclusion: A New Function of 199 (1)
Myoglobin?
References 200 (1)
B.10 Hemoglobin and Myoglobin 201 (2)
Susanna Herold
2.7 Synthetic Approaches to Study Multivalent 203 (12)
Carbohydrate-Lectin Interactions
Valentin Wittmann
2.7.1 Introduction 203 (1)
2.7.2 Mechanistic Aspects of Multivalent 203 (3)
Interactions
2.7.3 Low-valent Glycoclusters for 206 (2)
"Directed Multivalence"
2.7.4 Spatial Screening of Lectin Ligands 208 (4)
2.7.4.1 Design and Synthesis of a 209 (1)
Library of Cyclic Neoglycopeptides
2.7.4.2 On-bead Screening and Ligand 209 (3)
Identification
2.7.5 Conclusion 212 (1)
References 212 (3)
Part 3 Studies In Drug Developments 215 (82)
3.1 Building a Bridge Between Chemistry and 217 (10)
Biology - Molecular Forceps that Inhibit the
Farnesylation of RAS
Hans Peter Nestler
3.1.1 Prolog 217 (1)
3.1.2 RAS - The Good, The Bad and The Ugly 218 (2)
3.1.3 Bridging the Gap 220 (2)
3.1.4 Epilog 222 (2)
References 224 (1)
B.11 Split-and-mix Libraries 225 (2)
Hans-Peter Nestler and Helma Wennemers
3.2 Inhibitors Against Human Mast Cell 227 (15)
Tryptase: A Potential Approach to Attack
Asthma?
Thomas J. Martin
3.2.1 Introduction 227 (2)
3.2.1.1 Asthma - Definition 227 (2)
3.2.2 Chemistry 229 (6)
3.2.3 Biological Results and Discussion 235 (2)
3.2.4 Conclusion 237 (1)
Acknowledgment 238 (1)
References 238 (1)
B.12 Serine Proteases 239 (3)
Thomas J. Martin
3.3 Preparation of Novel Steroids by 242 (6)
Microbiological and Combinatorial Chemistry
Christoph Huwe, Hermann Kunzer, and Ludwig
Zorn
3.3.1 Introduction 242 (1)
3.3.2 Results 243 (3)
References 246 (2)
3.4 Enantiomeric Nucleic Acids - Spiegelmers 248 (14)
Sven Klussmann
Abstract 248 (1)
3.4.1 Towards Nucleic Acid Shape Libraries 248 (1)
3.4.2 In-vitro Selection or SELER 249 (1)
Technology
3.4.3 Aspects of Chirality 250 (2)
3.4.4 Spiegelmer Technology 252 (1)
3.4.5 Examples and Properties of 252 (7)
Mirror-image Oligonucleotides
3.4.5.1 Spiegelmers Binding to Small 252 (2)
Molecules
3.4.5.2 Mirror-image DNA Inhibiting 254 (2)
Vasopressin In Cell Culture
3.4.5.3 RNA and DNA Spiegelmers Binding 256 (2)
to GnRH
3.4.5.4 In-vivo Data of GnRH Binding 258 (1)
Spiegelmers
3.4.6 Conclusion 259 (1)
Acknowledgments 259 (2)
Appendix 261 (1)
References 261 (1)
3.5 Aspartic Proteases Involved in 262 (15)
Alzheimer's Disease
Boris Schmidt and Alexander Siegler
3.5.1 Introduction 262 (7)
3.5.2 β-Secretase Inhibitors 269 (1)
3.5.3 γ-Secretase Inhibitors 270 (3)
3.5.4 Outlook 273 (1)
Acknowledgments 274 (1)
References 274 (2)
B.13 Aspartic Proteases 276 (1)
Boris Schmidt
3.6 Novel Polymer and Linker Reagents for the 277 (20)
Preparation of Protease-inhibitor Libraries
J g Rademann
3.6.1 A Concept for Advanced Polymer 277 (1)
Reagents
3.6.2 Protease-inhibitor Synthesis - A 278 (1)
Demanding Test Case for Polymer Reagents
3.6.3 The Development of Advanced 279 (6)
Oxidizing Polymers
3.6.3.1 Polymer-supported Heavy-metal 279 (1)
Oxides
3.6.3.2 Oxidation with Immobilized 279 (3)
Oxoammonium Salts
3.6.3.3 Oxidations with Immobilized 282 (2)
Periodinanes
3.6.3.4 Preparation of Peptide Aldehyde 284 (1)
Collections
3.6.4 Polymer-supported Acylanion 285 (3)
Equivalents [30]
3.6.5 Conclusions 288 (1)
References 289 (1)
B.14 Polymer-supported Synthetic Methods - 290 (3)
Solid-phase Synthesis (SPS) and
Polymer-assisted Solution-phase (PASP)
Synthesis
J g Rademann
B.15 Inhibition of Proteases 293 (6)
J g Rademann
Part 4 Studies In Diagnostic Developments 297 (90)
4.1 Selectivity of DNA Replication 299 (12)
Andreas Marx, Daniel Summerer, and Michael
Strerath
4.1.1 Introduction 299 (1)
4.1.2 Biochemical and Structural Studies 300 (3)
4.1.3 Use of Tailored Nucleotide Analogs 303 (4)
to Probe DNA Polymerases
4.1.3.1 Non-polar Nucleobase Surrogates 303 (2)
4.1.3.2 Analogs with Modified Sugar 305 (2)
Moieties
4.1.4 Conclusions and Perspectives 307 (1)
References 308 (1)
B.16 Polynucleotide Polymerases 309 (2)
Susanne Brakmann
4.2 Homogeneous DNA Detection 311 (18)
Oliver Seitz
4.2.1 Introduction 311 (1)
4.2.2 Non-specific Detection Systems 311 (1)
4.2.3 Specific Detection Systems 312 (10)
4.2.3.1 Single Label Interactions 312 (5)
4.2.3.2 Dual Label Interactions 317 (5)
4.2.4 Conclusion 322 (1)
References 322 (1)
B.17 Melting Temperature TM of Nucleic Acid 323 (2)
Duplexes
Oliver Seitz
B.18 Molecular Beacons 325 (2)
Oliver Seitz
B.19 Peptide Nucleic Acids, PNA 327 (2)
Oliver Seitz
4.3 Exploring the Capabilities of Nucleic 329 (15)
Acid Polymerases by Use of Directed Evolution
Susanne Brakmans and Marina Schlicke
4.3.1 Introduction 329 (1)
4.3.2 Directed Evolution of Nucleic Acid 330 (1)
Polymerases
4.3.3 Practical Approaches to the 331 (2)
Directed Evolution of Polymerase
Function: Selection or Screening?
4.3.3.1 Selection of Polymerases with 331 (1)
Altered Activity and Fidelity
4.3.3.2 Screening Polymerase Libraries 331 (2)
for Altered Activity
4.3.4 Genetic Selection of an Error-prone 333 (2)
Variant of Bacteriophage T7 RNA Polymerase
4.3.5 Screening for Polymerases with 335 (2)
Altered Substrate Tolerance
4.3.6 Alternative Scenarios for Assaying 337 (1)
Polymerase Activity
4.3.7 Concluding Remarks 338 (1)
References 339 (2)
B.20 Directed Molecular Evolution of 341 (3)
Proteins
Petra Tafelmeyer, and Kai Johnsson
4.4 Labeling of Fusion Proteins with Small 344 (8)
Molecules in vivo
Susanne Gendreizig, Antje Keppler,
Alexandre Juillerat, Thomas Gronemeyer, and
Kai Johnsson
4.4.1 Introduction 344 (6)
Acknowledgment 350 (1)
References 350 (2)
4.5 Oxidative Splitting of Pyrimidine 352 (17)
Cyclobutane Dimers
Uta Wille
4.5.1 Introduction 352 (2)
4.5.2 Mechanism of the Oxidative 354 (4)
Splitting of PyroPyr
4.5.3 Stereoselectivity of the Oxidative 358 (4)
Splitting of PyroPyr
4.5.4 Conclusions 362 (1)
4.5.5 Experimental 363 (1)
4.5.5.1 Oxidative Cleavage of the 363 (1)
1,3-Dimethyluracil-derived Cyclobutane
Dimers 1 by Nitrate Radicals (NO3キ)
References 363 (1)
B.21 DNA Damage 364 (5)
Uta Wille
4.6 Charge Transfer in DNA 369 (18)
Hans-Achim Wagenknecht
4.6.1 Introduction 369 (1)
4.6.2 Hole Transfer and Hole Hopping in 369 (4)
DNA
4.6.2.1 Spectroscopic Studies 370 (2)
4.6.2.2 Biochemical Experiments 372 (1)
4.6.3 Protein-dependent Charge Transfer 373 (6)
in DNA
4.6.4 Reductive Electron Transfer in DNA 379 (5)
Acknowledgments 384 (1)
References 384 (3)
Part 5 Catalysis 387 (60)
5.1 Protease-catalyzed Formation of C-N Bonds 389 (15)
Frank Bordusa
5.1.1 Optimization of Proteases for 389 (1)
Synthesis: Selection of Current Techniques
5.1.2 Substrate Engineering 390 (1)
5.1.3 Classical Concept of Leaving-group 390 (1)
Manipulation
5.1.4 Substrate Mimetics-mediated 391 (5)
Syntheses
5.1.5 Enzyme Engineering 396 (1)
5.1.6 Chemical Enzyme Modifications 396 (2)
5.1.7 Genetic Enzyme Modifications 398 (4)
5.1.8 Conclusions 402 References 402 (2)
5.2 Twin Ribozymes 404 (18)
Sabine Muller, R iger Welz, Sergei A.
Ivanov, and Katrin Bassmann
5.2.1 Introduction 404 (1)
5.2.2 Application of Ribozymes 404 (2)
5.2.3 Building Blocks for Twin Ribozymes 406 (6)
5.2.3.1 The Conventional Hairpin 406 (3)
Ribozyme (HP-WT)
5.2.3.2 The Reverse-joined Hairpin 409 (2)
Ribozyme (HP-RJ)
5.2.3.3 Three-way Junction Hairpin 411 (1)
Ribozymes (HP-TJ)
5.2.3.4 Branched Reverse-joined Hairpin 411 (1)
Ribozymes (HP-RJBR)
5.2.4 Design, Synthesis and 412 (4)
Characterization of Twin Ribozymes
5.2.5 Application of Twin Ribozymes 416 (1)
5.2.6 Summary and Outlook 417 (2)
References 419 (1)
B.22 Ribozymes 419 (3)
Sabine Muller
5.3 RNA as a Catalyst: the Diels-Alderase 422 (14)
Ribozyme
Sonja Keiper, Dirk Bebenroth, Friedrich
Stuhlmann, and Andres J舖chke
5.3.1 Introduction 422 (1)
5.3.2 Diels-Alder Reaction 423 (1)
5.3.3 In-vitro Selection 424 (1)
5.3.4 Sequence Analysis and Ribozyme 425 (2)
Engineering
5.3.5 Mutation Analysis 427 (1)
5.3.6 True Catalysis 427 (2)
5.3.7 Kinetics 429 (1)
5.3.8 Stereoselectivity 430 (1)
5.3.9 Substrate Specificity and 431 (1)
Inhibition
5.3.10 Conclusions 432 (1)
References 433 (1)
B.23 SELEX: Systematic Evolution of Ligands 433 (3)
by Exponential Enrichment
Andres J舖chke and Sonja Keiper
5.4 Combinatorial Methods for the Discovery 436 (11)
of Catalysts
Helma Wennemers
5.4.1 Introduction 436 (1)
5.4.2 Testing of Parallel Libraries for 437 (3)
Catalytic Activity
5.4.2.1 Colorimetric and Fluorescent 437 (2)
Screening
5.4.2.2 IR-Thermography 439 (1)
5.4.3 Testing of Split-and-mix Libraries 440 (4)
for Catalytic Activity
5.4.3.1 IR-thermography 440 (1)
5.4.3.2 Formation of Insoluble Reaction 441 (1)
Products
5.4.3.3 Fluorescent pH Indicators 441 (2)
5.4.3.4 Gels as Reaction Media 443 (1)
5.4.3.5 Catalyst-Substrate 443 (1)
Co-immobilization
5.4.4 Conclusions 444 (1)
References 444 (3)
Part 6 Methodology, Bioengineering and 447 (114)
Bioinspired Assemblies
6.1 Linkers for Solid-phase Synthesis 449 (36)
Kerstin Knepper, Carmen Gil, and Stefan
Br舖e
6.1.1 Introduction 449 (2)
6.1.2 General Linker Structures 451 (1)
6.1.2.1 Immobilization of Molecules 451 (1)
6.1.2.2 Spacers 452 (1)
6.1.3 Linker Families 452 (13)
6.1.3.1 Benzyl-type Linkers 453 (2)
6.1.3.2 Trityl Resins 455 (1)
6.1.3.3 Allyl-based Linkers 455 (1)
6.1.3.4 Ketal Linkers 456 (1)
6.1.3.5 Ester and Amide Linkers 457 (1)
6.1.3.6 Silicon- and Germanium-based 458 (1)
Linkers
6.1.3.7 Boron Linkers 459 (1)
6.1.3.8 Sulfur Linkers 459 (1)
6.1.3.9 Stannane Linkers 460 (1)
6.1.3.10 Selenium Linkers 461 (1)
6.1.3.11 Triazene Linkers 461 (4)
6.1.4 Orthogonality Between Linkers 465 (1)
6.1.5 Cleavage of Linkers 465 (7)
6.1.5.1 Oxidative/Reductive Methods 466 (2)
6.1.5.2 Special Linkers 468 (1)
6.1.5.3 Metal-assisted Cleavage 468 (4)
6.1.6 Linker and Cleavage Strategies 472 (8)
6.1.6.1 Safety-catch Linkers 474 (1)
6.1.6.2 Cyclative Cleavage 474 (2)
(Cyclorelease Strategy)
6.1.6.3 Fragmentation Strategies 476 (1)
6.1.6.4 Traceless Linkers 477 (2)
6.1.6.5 Multifunctional Cleavage 479 (1)
6.1.7 Conclusion, Summary, and Outlook 480 (1)
References 481 (4)
6.2 Small Molecule Arrays 485 (16)
Rolf Breinbauer, Maja K n, and Carsten
Peters
6.2.1 Introduction 485 (1)
6.2.2 Arrays 485 (8)
6.2.2.1 DNA Microarrays 485 (2)
6.2.2.2 Protein Microarrays 487 (5)
6.2.2.3 Cell Arrays 492 (1)
6.2.3 Small Molecule Arrays 493 (4)
6.2.3.1 Synthesis on Planar Supports 493 (1)
6.2.3.2 Spotting of Small Molecules 494 (3)
6.2.4 Outlook and Conclusions 497 (1)
References 497 (4)
6.3 Biotechnological Production of 501 (10)
D-Pantothenic Acid and Its Precursor
D-Pantolactone
Maria Kesseler
6.3.1 Introduction 501 (1)
6.3.2 Fermentative Production of 502 (2)
D-Pantothenic Acid
6.3.3 Biocatalytic Production of 504 (4)
D-Pantolactone
6.3.3.1 Biocatalytic Asymmetric 504 (1)
Synthesis
6.3.3.2 Resolution of rac-Pantolactone 504 (1)
by Fungal Hydrolysis of D-Pantolactone
6.3.3.3 Resolution of roc-Pantolactone 505 (3)
by Bacterial Hydrolysis of
L-Pantolactone: The Development of a
Novel Biocatalyst
6.3.4 Conclusions 508 (1)
References 509 (2)
6.4 Microbially Produced Functionalized 511 (15)
Cyclohexadiene-trans-diols as a New Class of
Chiral Building Block In Organic Synthesis:
On the Way to Green and Combinatorial
Chemistry
Volker Lorbach, Dirk Franke, Simon E゚er,
Christian Dose, Georg A. Sprenger, and
Michael M ler
6.4.1 Introduction 511 (1)
6.4.2 The Shikimate Pathway 511 (3)
6.4.3 Microbial Production of 514 (1)
2,3-trans-CHD
6.4.4 Application of 2,3-trans-CHD in 515 (1)
Natural-product Syntheses
6.4.5 Regio- and Stereoselective 516 (2)
Epoxidation
6.4.6 Nucleophilic Opening of the 518 (1)
Epoxides Obtained
6.4.7 Regio- and Stereoselective 519 (1)
Dihydroxylation
6.4.8 Microbial Production of 520 (2)
3,4-trans-CH D
6.4.9 Discussion 522 (1)
References 523 (1)
B.24 Metabolic Pathway Engineering 524 (2)
Volker Lorbach, Dirk Franke, Georg
Sprenger, Michael M ler
6.5 Artificial Molecular Rotary Motors Based 526 (14)
on Rotaxanes
Thorsten Felder and Christoph A. Scholley
Abstract 526 (1)
6.5.1 "Molecular Machines" - Reality or 526 (1)
Just a Fashionable Term?
6.5.2 Tracing Back ATP Synthesis in 527 (2)
Living Cells
6.5.3 Rotaxanes as Artificial Analogs to 529 (1)
Molecular Motors?
6.5.4 Rotaxane Synthesis via Template 530 (1)
Effects
6.5.5 How to Achieve Unidirectional 531 (3)
Rotation in Artificial Molecular Motors?
6.5.6 The Fuel for Driving the Motor: 534 (3)
Light, Electrons, and Chemical Energy
6.5.7 Conclusions 537 (1)
References 538 (2)
6.6 Chemical Approaches for the Preparation 540 (21)
of Biologically-inspired Supramolecular
Architectures and Advanced Polymeric Materials
Harm-Anton Klok
6.6.1 Introduction 540 (1)
6.6.2 Ring-opening Polymerization of 541 (3)
α-Amino Acid N-Carboxyanhydrides
6.6.3 Solid-phase Peptide Synthesis 544 (4)
6.6.4 Peptide Ligation 548 (2)
6.6.5 Summary and Conclusions 550 (3)
References 553 (1)
B.25 Solid-phase Peptide Synthesis 554 (3)
Harm-Anton Klok
B.26 Peptide Ligation 557 (4)
Harm-Anton Klok
Index 561