Modern Carbonyl Olefination : Methods and Applications (2004. XVI, 349 p. 24 cm)

個数:

Modern Carbonyl Olefination : Methods and Applications (2004. XVI, 349 p. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527306343

Description


(Short description)
Olefinierungsreaktionen gehören zu den wichtigsten Umsetzungen in der organischen Chemie. Dieses Buch fasst zum ersten Mal alle wichtigen Aspekte dieser vielfältig anwendbaren Reaktion zusammen, wie zum Beispiel: Wittig Reaktion - Peterson Olefinierung - Julia Olefinierung - McMurry Kupplung und weitere verwandte Olefinierungen. Der Leser findet hier in einem Buch alle Informationen, die er sich sonst zeitaufwendig aus unterschiedlichen Quellen zusammenstellen müsste. Ein Muss für jeden Chemiker.
(Table of content)
The Wittig and Related Reactions
The Peterson and Related Reactions
The Julia Olefination and Realated Reactions
Olefination Utilizing the Tebbe and Related Reagents
Low-valent Chromium, Zinc or Titanium Mediated Olefination
The McMurry Coupling and Related Reactions
(Short description)
While this important reaction class is among the most important and most widely used in organic chemistry, this is the first book to summarize the many different olefination methods, including: Wittig reaction - Peterson reaction - Julia olefination - Utilizing the Tebbe and related reagents - Low-valent chromium, zinc or titanium mediated olefination - McMurry coupling plus the related reactions in each case and the application to asymmetric synthesis. It thus collates in one ready reference the current level of knowledge as well as new developments in this constantly evolving field -- information which until now has been dispersed throughout the literature.
(Table of content)
From the contents:
The Wittig and Related Reactions - The Peterson and Related Reactions - The Julia Olefination and Realated Reactions - Olefination Utilizing the Tebbe and Related Reagents - Low-valent Chromium, Zinc or Titanium Mediated Olefination - The McMurry Coupling and Related Reactions

Table of Contents

Preface                                            xiii
List of Authors xv
1 The Wittig Reaction I
Michael Edmonds and Andrew Abell
1.1 Introduction 1 (1)
1.2 The "Classic" Wittig Reaction 2 (3)
1.2.1 Mechanism and Stereoselectivity 2 (1)
1.2.2 Nature of the Ylide and Carbonyl 3 (1)
Compound
1.2.3 Reagents and Reaction Conditions 4 (1)
1.3 Horner-Wadsworth-Emmons Reaction 5 (4)
1.3.1 Mechanism and Stereochemistry 6 (2)
1.3.2 Reagents and Reaction Conditions 8 (1)
1.4 Horner-Wittig (HW) Reaction 9 (6)
1.4.1 Mechanism and Stereochemistry 9 (5)
1.4.2 Reagents and Reaction Conditions 14 (1)
1.5 Conclusion 15 (1)
References 16 (2)
2 The Peterson and Related Reactions 18 (86)
Naokazu Kano and Takayuki Kawashima
2.1 Introduction 18 (1)
2.2 Stereochemistry and the Reaction 19 (13)
Mechanism of the Peterson Reaction
2.2.1 Stereochemistry and the Reaction 19 (4)
Mechanism of the Peterson Reaction of
β-Hydroxyalkylsilanes
2.2.1.1 Stepwise Mechanism 21 (1)
2.2.1.2 Reaction Mechanism via a 22 (1)
1,2-Oxasiletanide
2.2.2 Reaction Mechanism of the Addition 23 (6)
Step of an α-Silyl Carbanion to a
Carbonyl Compound
2.2.2.1 Approach Control of the 23 (2)
Transition State
2.2.2.2 Concerted Mechanism 25 (1)
2.2.2.3 Chelation Control Mechanism 26 (3)
2.2.3 Theoretical Calculations on the 29 (2)
Reaction Mechanism
2.2.4 Convergently Stereoselective 31 (1)
Peterson Reactions
2.3 Generation of α-Silyl Carbanions 32 (38)
and their Peterson Reactions
2.3.1 Generation of α-Silyl 32 (5)
Carbanions from α-Silylalkal Halides
2.3.1.1 Generation of α-Silyl 32 (1)
Grignard Reagents from
α-Silylalkal Halides
2.3.1.2 Generation of α-Silyl 32 (1)
Alkyllithium Reagents from
α-Silylalkyl Halides
2.3.1.3 Synthesis of Terminal Alkenes 33 (2)
by the Use of α-Silyl Carbanions
Generated from α-Silylalkal
Halides
2.3.1.4 Reactions of α-Silyl 35 (2)
Carbanions Generated from
α-Silylalkyl Halides with Esters,
Carboxylic Acids, and Acetals
2.3.1.5 The Reformatsky-Peterson 37 (1)
Reactions of α-Silylalkyl Halides
2.3.2 Generation of α-Silyl 37 (1)
Carbanions by Deprotonation of
Alkylsilanes
2.3.2.1 Generation of α-Silyl 37 (2)
Carbanions Bearing an Aryl or a
Heteroaryl Group
2.3.2.2 Generation of α-Silyl 39 (2)
Carbanions Bearing an Alkoxy Group
2.3.2.3 Generation of α-Silyl 41 (1)
Carbanions Bearing a
Nitrogen-Containing Group
2.3.2.4 Generation of α-Silyl 41 (7)
Carbanions Bearing a Sulfur-Containing
Group
2.3.2.5 Generation of α-Silyl 48 (2)
Carbanions Bearing a
Phosphorus-Containing Group
2.3.2.6 Generation of α-Silyl 50 (2)
Carbanions Bearing a Halogen Group
2.3.2.7 Generation of α-Silyl 52 (1)
Carbanions from α-Silyl Ketones
2.3.2.8 Generation of α-Silyl 52 (1)
Carbanions Bearing an Ester Group
2.3.2.9 Generation of α-Silyl 53 (1)
Carbanions Bearing a Lactone Group
2.3.2.10 Generation of α-Silyl 53 (1)
Carbanions Bearing Thiocarboxylate or
Dithiocarboxylate Ester Groups
2.3.2.11 Generation of α-Silyl 53 (1)
Carbanions Bearing an Imine Group
2.3.2.12 Generation of α-Silyl 54 (1)
Carbanions Bearing an Amide Group
2.3.2.13 Generation of α-Silyl 55 (1)
Carbanions Bearing a Cyanide Group
2.3.2.14 Generation of α-Silyl 56 (2)
Carbanions from Allylsilanes
2.3.2.15 Generation of α-Silyl 58 (1)
Carbanions from Propargylsilanes
2.3.3 Generation of α-Silyl 58 (2)
Carbanions by Substitution of a Heteroatom
2.3.3.1 Generation of α-Silyl 58 (1)
Carbanions by Reduction of a Sulfanyl
Group
2.3.3.2 Generation of α-Silyl 59 (1)
Carbanions by Substitution of Selenium
2.3.3.3 Generation of α-Silyl 60 (1)
Carbanions by Desilylation of
Bis(trimethylsilyl)methane Derivatives
2.3.3.4 Generation of α-Silyl 60 (1)
Carbanions by Tin-Lithium
Transmetallation
2.3.4 Formation of 60 (2)
β-Hydroxyalkylsilanes from Silyl
Enol Ethers
2.3.5 Fluoride Ion Induced Peterson-Type 62 (6)
Reactions
2.3.5.1 Generation of α-Silyl 62 (2)
Carbanions by Fluoride Ion Induced
Desilylation
2.3.5.2 Fluoride Ion Induced 64 (1)
Peterson-Type Reactions of
Bis(trimethylsilyl)methane Derivatives
2.3.5.3 Fluoride Ion Catalyzed 65 (3)
Peterson-Type Reactions of
Bis(trimethylsilyl)methylamine
Derivatives
2.3.5.4 Fluoride Ion Catalyzed 68 (1)
Peterson-Type Reactions with
Elimination of Trimethylsilanol
2.3.6 Generation of α-Silyl 68 (2)
Carbanions by Addition of Nucleophiles to
Vinylsnares
2.4 Synthetic Methods for β-Silyl 70 (7)
Alkoxides and β-Hydroxyalkylsilanes
2.4.1 Reactions of α-Silyl Ketones, 70 (2)
Esters, and Carboxylic Acids with
Nucleophiles
2.4.2 Ring-Opening Reactions 72 (2)
2.4.2.1 Ring-Opening Reactions of 72 (1)
Oxiranes
2.4.2.2 Ring-Opening Reactions of 73 (1)
Cyclic Esters and Ethers
2.4.3 Hydroboration of 1-Silylallenes 74 (2)
2.4.4 Dihydroxylation of Vinylsilanes and 76 (1)
Allylsilanes
2.5 Related Reactions 77 (15)
2.5.1 The Homo-Brook Rearrangement 77 (2)
2.5.2 Homo-Peterson Reaction 79 (1)
2.5.3 Vinylogous Peterson Olefination 80 (1)
2.5.4 Tandem Reactions and One-Pot 81 (4)
Processes Involving the Peterson Reaction
2.5.5 The Germanium, Tin, and Lead 85 (3)
Versions of the Peterson Reaction
2.5.5.1 The Germanium-Peterson Reaction 85 (1)
2.5.5.2 The Tin-Peterson Reaction 86 (2)
2.5.5.3 The Lead-Peterson Reaction 88 (1)
2.5.6 Synthesis of Carbon-Heteroatom 88 (18)
Double-Bond Compounds by Peterson-Type
Reactions
2.5.6.1 Synthesis of Imines 88 (1)
2.5.6.2 Synthesis of Phosphaalkenes 89 (1)
2.5.6.3 Synthesis of Silenes 90 (1)
2.5.6.4 Synthesis of Germenes 91 (1)
2.5.6.5 Synthesis of Sulfines 91 (1)
2.6 Conclusion 92 (1)
References 93 (11)
3 The Julia Reaction 104 (47)
Rapha  Dumeunier and Istv疣 E. Mark k 
3.1 Introduction 104 (1)

3.2 Historical Background 105 (1)

3.3 Coupling Between the Two Precursors of 106 (14)

the Julia Reaction

3.3.1 Synthesis of Terminal Olefins 107 (2)

3.3.2 Preparation of 1,2-Disubstituted 109 (3)

Olefins

3.3.3 Towards Trisubstituted Olefins 112 (2)

3.3.4 Towards Tetrasubstituted Olefins 114 (1)

3.3.5 Specific Considerations 115 (5)

3.3.5.1 Conjugated Olefins 115 (1)

3.3.5.2 Leaving Groups 115 (3)

3.3.5.3 Competitive Metallation on the 118 (2)

Aromatic Ring of the Sulfone

3.4 Reductive Elimination 120 (16)

3.4.1 Sulfones Bearing Vicinal Hydroxyl 122 (5)

Groups

3.4.2 Sulfones Bearing Vicinal Leaving 127 (3)

Groups

3.4.3 Reverse Reductions 130 (3)

3.4.4 Reductions of Vicinal Oxygenated 133 (3)

Sulfoxides

3.4.5 Reduction of Vinyl Sulfones 136 (1)

3.5 Second Generation Julia Reactions 136 (5)

3.6 Miscellaneous Julia Reactions 141 (4)

3.6.1 gem-Halogeno-Metal Electrophiles 141 (2)

3.6.2 Use of Sulfoximines 143 (2)

3.7 Conclusions 145 (1)

References 146 (5)

4 Carbonyl Olefination Utilizing Metal Carbene 151 (49)

Complexes

Takeshi Takeda and Akira Tsubouchi

4.1 Introduction 151 (1)

4.2 Carbonyl Olefination with 152 (14)

Titanocene-Methylidene and Related Reagents

4.2.1 Preparation of 152 (9)

Titanocene-Methylidene

4.2.1.1 The Tebbe Reagent 152 (7)

4.2.1.2 β-Substituted 159 (2)

Titanacyclobutanes as Precursors of

Titanocene-Methylidene

4.2.1.3 Zinc and Magnesium Analogues of 161 (1)

the Tebbe Reagent

4.2.2 Higher Homologues of 161 (5)

Titanocene-Methylidene

4.3 Carbonyl Olefination with 166 (12)

Dialkyltitanocenes

4.3.1 Methylenation with 166 (6)

Dimethyltitanocene

4.3.2 Alkylidenation of Carbonyl 172 (4)

Compounds with Dialkyltitanocenes and

Related Complexes

4.3.3 Allenation of Carbonyl Compounds 176 (1)

with Alkenyltitanocene Derivatives

4.3.4 Carbonyl Olefination Utilizing an 176 (2)

Alkyl Halide-Titanocene(II) System

4.4 Carbonyl Olefination Utilizing a 178 (7)

Thioacetal-Titanocene(II) System

4.4.1 Formation of Titanocene-Alkylidenes 178 (1)

from Thioacetals and Titanocene(II)

4.4.2 Alkylidenation of Aldehydes, 179 (3)

Ketones, and Carboxylic Acid Derivatives

4.4.3 a-Heteroatom-Substituted Carbene 182 (1)

Complexes

4.4.4 Intramolecular Carbonyl Olefination 182 (2)

4.4.5 Related Olefinations Utilizing 184 (1)

gem-Dihalides

4.5 Carbonyl Olefination Using Zirconium, 185 (9)

Tantalum, Niobium, Molybdenum, and Tungsten

Carbene Complexes

4.5.1 Zirconium Carbene Complexes 185 (3)

4.5.2 Tantalum and Niobiurn Carbene 188 (1)

Complexes

4.5.3 Molybdenum Carbene Complexes 189 (3)

4.5.4 Tungsten Carbene Complexes 192 (2)

4.6 Conclusion 194 (1)

References 194 (6)

5 Olefination of Carbonyl Compounds by Zinc and 200 (23)

Chromium Reagents

Seijiro Matsubara and Koichiro Oshima

5.1 Introduction 200 (1)

5.2 Zinc Reagents 201 (13)

5.2.1 Methylenation Reactions 202 (6)

5.2.1.1 By Zn-CH2X2 202 (1)

5.2.1.2 By Zn-CH2X2-TiCln 203 (5)

5.2.2 Alkylidenation Reactions 208 (4)

5.2.2.1 From gem-Dihaloalkanes 208 (3)

5.2.2.2 Via Carbometallation 211 (1)

5.2.3 Alkenylsilane, -germane, and 212 (2)

-borane Synthesis

5.3 Chromium Compounds 214 (3)

5.3.1 Alkylidenation 214 (1)

5.3.2 Preparation of Alkenylboranes, 215 (1)

-silanes, and -stannanes with

E-Configuration

5.3.3 Preparation of (E)-Haloalkenes 215 (2)

5.4 Applications in Natural Product 217 (4)

Synthesis

5.4.1 Zn-CH2X2-TiCl4 218 (1)

5.4.2 CHX3-CrCl2 218 (3)

5.5 Conclusion 221 (1)

References 221 (2)

6 The McMurry Coupling and Related Reactions 223 (63)

Michel Ephritikhine and Claude Villiers

6.1 Introduction 223 (1)

6.2 Scope of the McMurry Reaction 224 (35)

6.2.1 Intermolecular Coupling Reactions 224 (16)

6.2.1.1 Intermolecular Coupling of 224 (2)

Aldehydes and Ketones

6.2.1.2 Intermolecular Coupling of 226 (2)

Unsaturated Aldehydes and Ketones

6.2.1.3 Intermolecular Coupling of 228 (7)

Aldehydes and Ketones with Functional

Heteroatom Groups

6.2.1.4 Intermolecular Coupling of 235 (2)

Organometallic Ketones and Aldehydes

6.2.1.5 The McMurry Reaction in Polymer 237 (1)

Synthesis

6.2.1.6 Intermolecular Cross-Coupling 237 (3)

Reactions

6.2.2 Intramolecular Coupling Reactions 240 (9)

of Aldehydes and Ketones

6.2.2.1 Synthesis of Non-Natural 240 (6)

Products

6.2.2.2 Synthesis of Natural Products 246 (3)

6.2.3 Tandem Coupling Reactions 249 (5)

6.2.4 Keto Ester Couplings 254 (2)

6.2.4.1 Intermolecular Keto Ester 254 (1)

Couplings

6.2.4.2 Intramolecular Keto Ester 255 (1)

Cyclizations; Synthesis of Cyclanones

6.2.4.3 Intramolecular Cyclizations of 255 (1)

Acyloxycarbonyl Compounds; Synthesis of

Furans

6.2.5 Intramolecular Couplings of 256 (2)

A輙amidocarbonyl Compounds; Synthesis of

Pyrroles and Indoles

6.2.6 Reductive Coupling of Benzylidene 258 (1)

Acetals

6.3 Procedures and Reagents Used in the 259 (7)

McMurry Reactions

6.3.1 Procedures 259 (1)

6.3.2 Reagents 260 (6)

6.3.2.1 The TiCl4- and TiCl3-Reducing 260 (1)

Agent Systems

6.3.2.2 Effect of Additives on the 261 (5)

TiCl4- and TiCl3- Reducing Agent Systems

6.3.2.3 Other Systems for the McMurry 266 (1)

Alkene Synthesis: Organotitanium

Complexes, Titanium Oxides, Titanium

Metal

6.4 Mechanisms of the McMurry Reaction 266 (9)

6.4.1 Nature of the Active Species 267 (1)

6.4.2 Characterization of the Pinacolate 268 (4)

Intermediates

6.4.3 Evidence of Carbenoid Intermediates 272 (1)

6.4.4 Mechanistic Analogies Between the 273 (1)

McMurry, Wittig, and Clemmensen Reactions

6.4.5 The Different Pathways of the 274 (1)

McMurry Reaction

6.5 Conclusion 275 (2)

References 277 (9)

7 Asymmetric Carbonyl Olefination 286 (57)

Kiyoshi Tanaka, Takumi Furuta, and Kooru Fuji

7.1 Introduction and Historical Aspects 286 (3)

7.2 Strategies for Asymmetric Carbonyl 289 (1)

Olefination

7.3 Optically Active Phosphorus or 290 (9)

Arsenic Reagents Used in Asymmetric

Carbonyl Olefination

7.4 Discrimination of Enantiotopic or 299

Diastereotopic Carbonyl Groups

7.4.1 Intermolecular Desymmetrization of 299 (4)

Symmetrical Dicarbonyl Compounds

7.4.2 Intramolecular Discrimination 303 (3)

Reactions

7.5 Discrimination of Enantiotopic or 306 (1)

Diastereotopic Carbonyl π-Faces

7.5.1 Reactions with Prochiral Carbonyl 306 (5)

Compounds

7.5.2 Reactions with Chiral Non-Racemic 311 (2)

Carbonyl Compounds

7.5.3 Reactions with Prochiral Ketenes to 313 (3)

give Dissymmetric Allenes

7.6 Kinetic Resolution 316 (1)

7.6.1 Resolution of Racemic Carbonyl 316 (5)

Compounds

7.6.2 Resolution of Racemic Phosphorus 321 (1)

Reagents

7.6.3 Parallel Kinetic Resolution 321 (2)

7.7 Dynamic Resolution 323 (2)

7.8 Further Application of Asymmetric 325 (1)

Wittig-type Reactions in Enantioselective

Synthesis

7.8.1 Use of Asymmetric Wittig-Type 325 (2)

Reactions in the Total Synthesis of

Natural Products

7.8.2 Sequential HWE and Pd-Catalyzed 327 (2)

Allylic Substitutions

7.8.3 Tandem Michael-HWE Reaction 329 (1)

7.9 Asymmetric Carbonyl Olefinations 329 (2)

Without Usage of Optically Active

Phosphorus Reagents

7.10 Asymmetric Carbonyl Olefination by 331 (5)

Non-Wittig-Type Routes

7.11 Concluding Remarks and Future 336 (2)

Perspectives

References 338 (5)

Index 343