Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen (Teubner Skripten zur Numerik) (1994. VIII, 175 S. 175 S. 244 mm)

個数:

Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen (Teubner Skripten zur Numerik) (1994. VIII, 175 S. 175 S. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 175 p.
  • 言語 GER
  • 商品コード 9783519027188
  • DDC分類 515

Description


(Text)
Die bei der numerischen Simulation verschiedener physikalischer und techni scher Vorgange auftretenden Differentialgleichungen fUhren nach Linearisierung und Diskretisierung zu sehr groBen linearen Gleichungssystemen, deren Be handlung mittels traditioneller direkter oder iterativer Losungsverfahren selbst auf modernsten Computern entweder gar nicht, oder nur mit unertraglich groBem Rechenaufwand und langer Rechenzeit moglich sind. 1m letzten Jahrzehnt sind nun effiziente Verfahren entwickelt worden, die den Losungsvorgang entscheidend beschleunigen. Hierbei sind hauptsachlich Mehr gittermethoden sowie Multilevel-Vorkonditionierer zu nennen, beide mit je weils verschiedenen Herleitungs- und Betrachtungsweisen sowie unterschied lichen Beweismethoden. Daneben ist durch den Einsatz paralleler Rechen systeme eine weitere Beschleunigung des Losungsvorgangs moglich geworden. Hierbei haben sich Gebietszerlegungsverfahren, unter anderem in Verbindung mit oben erwahnten Methoden, als besonders geeignet erwiesen. In dies em Buch stellen wir nun eine neue Sichtweise und Interpretationsmoglich keit fUr Mehrgitterverfahren, Multilevel-Vorkonditionierer und Gebietszerle gungsmethoden fUr elliptische Probleme VOL Dazu verwenden wir ein Erzeu gendensystem, das die Knotenbasen verschiedener Diskretisierungslevel umfaBt. Der Ritz-Galerkin-Ansatz fiihrt dann zu einem semidefiniten Gleichungssystem mit optimaler Kondition der Ordnung 0(1), wenn man von den fiir Iterations verfahren i.a. bedeutungslosen verschwindenden Eigenwerten absieht. Die oben erwahnten effizienten Verfahren (Mehrgitter, Multilevel-Vorkonditionierer) las sen sich nun als traditionelle iterative Methoden (GauB-Seidel, Jacobi-Vorkon ditionierer) iiber diesem semidefiniten System interpretieren. Bei der Konver genzanalyse dieser modernen Methoden gehen jetzt im Prinzip die gleichen Terme ein, wie schon bei der Analyse traditioneller Iterationsverfahren.
(Table of content)
1 Einleitung.- 2 Das semidefinite System.- 2.1 Zerlegung des Approximationsraumes.- 2.2 Das Erzeugendensystem.- 2.3 Die Ritz-Galerkin-Diskretisierung und das semidefinite System.- 3 Iterative Methoden für das semidefinite System.- 3.1 Ein Überblick über iterative Methoden.- 3.2 Jacobi- und Gauß-Seidel-artige Iterationsverfahren.- 3.3 Zur Konvergenz der Verfahren.- 4 Gradientenorientierte Verfahren für das semidefinite System.- 4.1 Das Residuum und vorkonditionierte Gradientenverfahren.- 4.2 BPX-Vorkonditionierer und verwandte Vorkonditionierer.- 4.3 Konditionsbetrachtungen.- 4.4 Effiziente Realisierung.- 5 Levelweise Gauß-Seidel-Iteration für das semidefinite System.- 5.1 Levelorientierte Partitionierung des semidefiniten Systems.- 5.2 Gauß-Seidel-Iteration und Mehrgitterverfahren.- 5.3 Konvergenzbetrachtungen.- 6 Punktweise Gauß-Seidel-Iteration für das semidefinite System.- 6.1 Punktorientierte Partitionierung des semidefiniten Systems.- 6.2 Konvergenzbetrachtungen.- 7 Gebietsorientierte Block-Gauß-Seidel-Verfahren.- 7.1 Gebietsweise Blockpartitionierung des semidefiniten Systems.- 7.2 Zur Vorkonditionierung des Schur-Komplements.- 8 Numerische Experimente zur Konvergenz der Verfahren.- 9 Zur Parallelisierung.- 9.1 Parallelisierung levelartiger Algorithmen.- 9.2 Parallelisierung punkt- und gebietsorientierter Algorithmen.- 9.3 Aufwandsbetrachtungen.- 10 Zur Robustheit.- 10.1 Robustheit von Mehrgitterverfahren.- 10.2 Robustheit von Multilevel-Vorkonditionierern.- 10.3 Punktorientierte Verfahren und robuste Verallgemeinerungen.- 11 Mittels Semivergröberung erweitertes Erzeugendensystem.- 11.1 Das erweiterte Erzeugendensystem.- 11.2 Iterative Verfahren für das erweiterte semidefinite System und numerische Experimente zur Konvergenz der einzelnen Verfahren.-12 Abschließende Bemerkungen.- Literatur.- Abbildungsverzeichnis.- Tabellenverzeichnis.
(Author portrait)
Dr. Michael Griebel ist Ordinarius für Wissenschaftliches Rechnen am Institut für Angewandte Mathematik der Universität in Bonn.

Contents

1 Einleitung.- 2 Das semidefinite System.- 2.1 Zerlegung des Approximationsraumes.- 2.2 Das Erzeugendensystem.- 2.3 Die Ritz-Galerkin-Diskretisierung und das semidefinite System.- 3 Iterative Methoden für das semidefinite System.- 3.1 Ein Überblick über iterative Methoden.- 3.2 Jacobi- und Gauß-Seidel-artige Iterationsverfahren.- 3.3 Zur Konvergenz der Verfahren.- 4 Gradientenorientierte Verfahren für das semidefinite System.- 4.1 Das Residuum und vorkonditionierte Gradientenverfahren.- 4.2 BPX-Vorkonditionierer und verwandte Vorkonditionierer.- 4.3 Konditionsbetrachtungen.- 4.4 Effiziente Realisierung.- 5 Levelweise Gauß-Seidel-Iteration für das semidefinite System.- 5.1 Levelorientierte Partitionierung des semidefiniten Systems.- 5.2 Gauß-Seidel-Iteration und Mehrgitterverfahren.- 5.3 Konvergenzbetrachtungen.- 6 Punktweise Gauß-Seidel-Iteration für das semidefinite System.- 6.1 Punktorientierte Partitionierung des semidefiniten Systems.- 6.2 Konvergenzbetrachtungen.- 7 Gebietsorientierte Block-Gauß-Seidel-Verfahren.- 7.1 Gebietsweise Blockpartitionierung des semidefiniten Systems.- 7.2 Zur Vorkonditionierung des Schur-Komplements.- 8 Numerische Experimente zur Konvergenz der Verfahren.- 9 Zur Parallelisierung.- 9.1 Parallelisierung levelartiger Algorithmen.- 9.2 Parallelisierung punkt- und gebietsorientierter Algorithmen.- 9.3 Aufwandsbetrachtungen.- 10 Zur Robustheit.- 10.1 Robustheit von Mehrgitterverfahren.- 10.2 Robustheit von Multilevel-Vorkonditionierern.- 10.3 Punktorientierte Verfahren und robuste Verallgemeinerungen.- 11 Mittels Semivergröberung erweitertes Erzeugendensystem.- 11.1 Das erweiterte Erzeugendensystem.- 11.2 Iterative Verfahren für das erweiterte semidefinite System und numerische Experimente zur Konvergenz der einzelnen Verfahren.-12 Abschließende Bemerkungen.- Literatur.- Abbildungsverzeichnis.- Tabellenverzeichnis.

最近チェックした商品