Vorlesungen über Wahrscheinlichkeitstheorie (Teubner Studienbücher Mathematik) (1996. vii, 424 S. VII, 424 S. 216 mm)

個数:

Vorlesungen über Wahrscheinlichkeitstheorie (Teubner Studienbücher Mathematik) (1996. vii, 424 S. VII, 424 S. 216 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 431 p.
  • 言語 GER
  • 商品コード 9783519025726
  • DDC分類 600

Description


(Text)
In diesem Lehrbuch, das insbesondere zur Vorlesungsbegleitung und für das Selbststudium gedacht ist, nehmen die Motivation der Begriffsbildungen, die Erläuterungen und Interpretationen der Ausagen sowie die Illustration durch Beispiele einen breiten Raum ein. Nach einer ausführlichen Darstellung der Modellbildung werden Grenzwertaussagen für unabhängige Zufallsgrößen bewiesen, insbesondere Gesetze der großen Zahlen, der zentrale Grenzwertsatz und Konvergenzen gegen Extremwertverteilungen. - Anschließend werden zufallsabhängige zeitliche Entwicklungen (stoachastische Prozesse) untersucht. Insbesondere werden Poisson- und Wiener-Prozesse behandelt und Martingale untersucht. 160 Übungsaufgaben ergänzen den Text.
(Table of content)
1 Das wahrscheinlichkeitstheoretische Modell.- 1.1 Einleitung.- 1.2 Die Axiome von Kolmogoroff.- 1.3 Realität - Modell.- 1.4 Aufgaben.- 2 Beispiele für Wahrscheinlichkeitsräume.- 2.1 Laplace-Experimente.- 2.2 Diskrete Zufallsexperimente.- 2.3 Riemannsche Dichten.- 2.4 Allgemeine Wahrscheinlichkeitsdichten.- 2.5 Zufallsgrößen; induzierte Wahrscheinlichkeitsverteilungen.- 2.6 Aufgaben.- 3 Kenngrößen von Wahrscheinlichkeitsverteilungen über (IRn, IBn).- 3.1 Eindimensionale Verteilungsfunktionen.- 3.2 Anwendungen bei induzierten Wahrscheinlichkeitsverteilungen.- 3.3 Erwartungswerte; schwaches Gesetz der großen Zahlen.- 3.4 Mehrdimensionale Verteilungsfunktionen.- 3.5 Momente von Zufalls Vektoren.- 3.6 Aufgaben.- 4 Gekoppelte Experimente; stochastische Unabhängigkeit.- 4.1 Produkte von meßbaren Räumen.- 4.2 Koppelung von Zufallsexperimenten; Satz von Kolmogoroff.- 4.3 Stochastisch unabhängige Ereignisse; 0-1-Gesetze.- 4.4 Stochastisch unabhängige Zufallsgrößen.- 4.5 Bedingte Wahrscheinlichkeiten, bedingte Erwartungswerte.- 4.6 Bedingte Verteilungen.- 4.7 Aufgaben.- 5 Starke Gesetze der großen Zahlen.- 5.1 Konvergenz nach Wahrscheinlichkeit und fast sichere Konvergenz.- 5.2 Die Ungleichung von Kolmogoroff und der Dreireihensatz.- 5.3 Die Kolmogoroffschen Gesetze der großen Zahlen.- 5.4 Der Satz von Glivenko-Cantelli.- 5.5 Aufgaben.- 6 Summenverteilungen; charakteristische Funktionen.- 6.1 Summen von stochastisch unabhängigen Zufallsgrößen; Faltungen.- 6.2 Charakteristische Funktionen.- 6.3 Bemerkungen zur Anwendung charakteristischer Funktionen.- 6.4 Aufgaben.- 7 Verteilungskonvergenz über (IRk,IBk); zentraler Grenzwertsatz.- 7.1 Verteilungskonvergenz über (IRk,IBk).- 7.2 Der Stetigkeitssatz für charakteristische Funktionen.- 7.3 DerGrenzwertsatz von Lindeberg/Levy.- 7.4 Der zentrale Grenzwertsatz.- 7.5 Aufgaben.- 8 Weitere Konvergenzsätze für unabhängige Zufallsgrößen.- 8.1 Konvergenzsätze für Zufallssummen.- 8.2 Der Satz vom iterierten Logarithmus.- 8.3 Extremwertverteilungen.- 8.4 Aufgaben.- 9 Allgemeine stochastische Prozesse; der Poisson- und der Wiener-Prozeß.- 9.1 Stochastische Prozesse.- 9.2 Der Poisson-Prozeß.- 9.3 Der Wiener-Prozeß.- 9.4 Aufgaben.- 10 Analytische Eigenschaften von stochastischen Prozessen.- 10.1 Stetigkeit von stochastischen Prozessen.- 10.2 Separabilität von stochastischen Prozessen.- 10.3 Eigenschaften der Pfade von separablen Poisson-Prozessen, Zwischenankunftszeiten.- 10.4 Bemerkungen zum Pfad-Verhalten von separablen Wiener-Prozessen.- 10.5 Aufgaben.- 11 Martingale.- 11.1 Adaptierende Familien von ?-Algebren.- 11.2 Martingale.- 11.3 Stopregeln.- 11.4 Gestoppte Martingale.- 11.5 Konvergenz von Martingalen.- 11.6 Aufgaben.- Anhang: Maßtheoretische Hilfsmittel.- A.1 Indikatorfunktionen, Limiten von Mengenfolgen.- A.2 Mengenalgebren.- A.3 ?-Algebren.- A.4 Inhalte und Maße.- A.5 Maßfortsetzung.- A.6 Meßbare Abbildungen.- A.7 Numerische Funktionen.- A.8 Maß-Integrale.- A.9 Vertauschungssätze für Maß-Integrale.- A.10 Produkträume.- A.U Marginalmaße, Produktmaße.- A.12 Der Satz von Radon-Nikodym.- A.13 Integralungleichungen.- Hinweise auf deutschsprachige Lehrbücher.

Contents

§1 Das wahrscheinlichkeitstheoretische Modell.- 1.1 Einleitung.- 1.2 Die Axiome von Kolmogoroff.- 1.3 Realität — Modell.- 1.4 Aufgaben.- §2 Beispiele für Wahrscheinlichkeitsräume.- 2.1 Laplace-Experimente.- 2.2 Diskrete Zufallsexperimente.- 2.3 Riemannsche Dichten.- 2.4 Allgemeine Wahrscheinlichkeitsdichten.- 2.5 Zufallsgrößen; induzierte Wahrscheinlichkeitsverteilungen.- 2.6 Aufgaben.- §3 Kenngrößen von Wahrscheinlichkeitsverteilungen über (IRn, IBn).- 3.1 Eindimensionale Verteilungsfunktionen.- 3.2 Anwendungen bei induzierten Wahrscheinlichkeitsverteilungen.- 3.3 Erwartungswerte; schwaches Gesetz der großen Zahlen.- 3.4 Mehrdimensionale Verteilungsfunktionen.- 3.5 Momente von Zufalls Vektoren.- 3.6 Aufgaben.- §4 Gekoppelte Experimente; stochastische Unabhängigkeit.- 4.1 Produkte von meßbaren Räumen.- 4.2 Koppelung von Zufallsexperimenten; Satz von Kolmogoroff.- 4.3 Stochastisch unabhängige Ereignisse; 0-1-Gesetze.- 4.4 Stochastisch unabhängige Zufallsgrößen.- 4.5 Bedingte Wahrscheinlichkeiten, bedingte Erwartungswerte.- 4.6 Bedingte Verteilungen.- 4.7 Aufgaben.- §5 Starke Gesetze der großen Zahlen.- 5.1 Konvergenz nach Wahrscheinlichkeit und fast sichere Konvergenz.- 5.2 Die Ungleichung von Kolmogoroff und der Dreireihensatz.- 5.3 Die Kolmogoroffschen Gesetze der großen Zahlen.- 5.4 Der Satz von Glivenko-Cantelli.- 5.5 Aufgaben.- §6 Summenverteilungen; charakteristische Funktionen.- 6.1 Summen von stochastisch unabhängigen Zufallsgrößen; Faltungen.- 6.2 Charakteristische Funktionen.- 6.3 Bemerkungen zur Anwendung charakteristischer Funktionen.- 6.4 Aufgaben.- §7 Verteilungskonvergenz über (IRk,IBk); zentraler Grenzwertsatz.- 7.1 Verteilungskonvergenz über (IRk,IBk).- 7.2 Der Stetigkeitssatz für charakteristische Funktionen.- 7.3 DerGrenzwertsatz von Lindeberg/Levy.- 7.4 Der zentrale Grenzwertsatz.- 7.5 Aufgaben.- §8 Weitere Konvergenzsätze für unabhängige Zufallsgrößen.- 8.1 Konvergenzsätze für Zufallssummen.- 8.2 Der Satz vom iterierten Logarithmus.- 8.3 Extremwertverteilungen.- 8.4 Aufgaben.- §9 Allgemeine stochastische Prozesse; der Poisson- und der Wiener-Prozeß.- 9.1 Stochastische Prozesse.- 9.2 Der Poisson-Prozeß.- 9.3 Der Wiener-Prozeß.- 9.4 Aufgaben.- §10 Analytische Eigenschaften von stochastischen Prozessen.- 10.1 Stetigkeit von stochastischen Prozessen.- 10.2 Separabilität von stochastischen Prozessen.- 10.3 Eigenschaften der Pfade von separablen Poisson-Prozessen, Zwischenankunftszeiten.- 10.4 Bemerkungen zum Pfad-Verhalten von separablen Wiener-Prozessen.- 10.5 Aufgaben.- §11 Martingale.- 11.1 Adaptierende Familien von ?-Algebren.- 11.2 Martingale.- 11.3 Stopregeln.- 11.4 Gestoppte Martingale.- 11.5 Konvergenz von Martingalen.- 11.6 Aufgaben.- Anhang: Maßtheoretische Hilfsmittel.- A.1 Indikatorfunktionen, Limiten von Mengenfolgen.- A.2 Mengenalgebren.- A.3 ?-Algebren.- A.4 Inhalte und Maße.- A.5 Maßfortsetzung.- A.6 Meßbare Abbildungen.- A.7 Numerische Funktionen.- A.8 Maß-Integrale.- A.9 Vertauschungssätze für Maß-Integrale.- A.10 Produkträume.- A.U Marginalmaße, Produktmaße.- A.12 Der Satz von Radon-Nikodym.- A.13 Integralungleichungen.- Hinweise auf deutschsprachige Lehrbücher.

最近チェックした商品