Paralleles Rechnen: Performancebetrachtungen Zu Gleichungslösern

個数:

Paralleles Rechnen: Performancebetrachtungen Zu Gleichungslösern

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 235 p.
  • 商品コード 9783486598513

Description


(Text)
Die ersten Kapitel konzentrieren sich auf die Informatik und beinhalten informatische Grundbegriffe, Rechnerarchitekturen und ein Performancemodell, OpenMP als Programmierumgebung für Mehrkernrechner und MPI und PVM als Programmiermodelle für Rechner mit verteiltem Speicher. Anschließend werden mathematische Algorithmen, Performancebetrachtungen, Design paralleler Programme und Ausführungen zu Simulationsprogrammen aus den Ingenieur- und Naturwissenschaften gegenübergestellt. Die nächsten Kapitel sind Performancebetrachtungen und Parallelisierungsstrategien für mathematische Algorithmen gewidmet, bevor abschließend GPUs behandelt und Teile der zuvor erläuterten Algorithmen auf diese übertragen und diskutiert werden. Roter Faden durch das mit vielen Erläuterungen und Quelltextbeispielen angereicherte Buch ist die Performanceanalyse unterschiedlicher Speicherungstechniken von Feldern am Beispiel der algorithmischen Lösung linearer Gleichungssysteme. Dazu wird zunächst das Gaußsche Eliminationsverfahren auf ein Blockverfahren umgestellt und dieses mit sehr hoher Performance auf einem Mehrkernrechner parallelisiert. Bei der iterativen Lösung linearer Gleichungssysteme steht das konjugierte Gradienten-Verfahren und seine fein granulare Parallelisierung im Vordergrund. Besonderes Augenmerk richtet sich dabei auf die Matrix-Vektor-Multiplikation und die Abhängigkeit der Performance von der Speicherungstechnik der Matrix. Gebietszerlegungsmethoden zur Lösung linearer Gleichungssysteme bieten einen grob granularen Parallelisierungsansatz, der für das massiv parallele Rechnen der fein granularen Parallelisierung auf Schleifenebene überlegen ist.
(Table of content)

(Author portrait)
Nach der Promotion zum Dr. rer. nat. in Münster arbeitete Josef Schüle als Post-Doc zunächst am Institut für Theoretische Physik in Stockholm und dann am Institut für Theoretische und Physikalische Chemie an der TU Berlin. Seit 1990 ist er Mitarbeiter am Rechenzentrum der TU Braunschweig und zuständig für Parallel- und Hochleistungsrechnen. Von 1993 bis 1996 hatte er einen Lehrauftrag vom dortigen Institut für Betriebssysteme und Rechnerverbund Hochleistungsrechnen, seit 1996 einen Lehrauftrag am Institut für Wissenschaftliches Rechnen Paralleles Rechnen I+II.

最近チェックした商品