Classification and Clustering in Business Cycle Analysis. (Schriften des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung 79) (2007. 166 S. Tab., Abb.; 166 S. 240 mm)

個数:

Classification and Clustering in Business Cycle Analysis. (Schriften des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung 79) (2007. 166 S. Tab., Abb.; 166 S. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 166 p.
  • 商品コード 9783428124251

Description


(Text)
The analysis of cyclical macroeconomic phenomena is an important field of econometric research. In the recent past, research interests have de-emphasized quantitative forecasting exercises and have addressed the qualitative diagnosis of the relative stance of the economy regarding »upswing«, »recession«, or ?»boom« periods, i. e. the classification of the state of the economy into a limited number of discrete states. In this context the principal challenge is to reduce the multifaceted and sometimes abundant quantitative information about the business cycle to such qualitative statements in an efficient way. For more than six years this task was the focus of the project »Multivariate determination and analysis of business cycles« within the SFB 475 »Reduction of complexity in multivariate data structures«, funded by the German Research Foundation (DFG).

The necessity for complexity reduction is, of course, not unique to business cycle analysis but is studied in many fieldsand in a number of ways. This broad interest in the reduction of problem dimensionality and in the appropriate combination of data and of theory caused the RWI Essen and the Statistical Department of the University of Dortmund in January 2002 to hold a workshop at the RWI Essen where the findings of this and similar projects were presented and discussed. The present publication collects revised versions of the papers presented at this workshop. Although the workshop took place some five years ago, these papers mark an importent juncture in the development of business cycle research.
(Text)
The analysis of cyclical macroeconomic phenomena is an important field of econometric research. In the recent past, research interests have de-emphasized quantitative forecasting exercises and have addressed the qualitative diagnosis of the relative stance of the economy regarding "upswing", "recession", or "boom" periods, i. e. the classification of the state of the economy into a limited number of discrete states. In this context the principal challenge is to reduce the multifaceted and sometimes abundant quantitative information about the business cycle to such qualitative statements in an efficient way. For more than six years this task was the focus of the project "Multivariate determination and analysis of business cycles" within the SFB 475 "Reduction of complexity in multivariate data structures", funded by the German Research Foundation (DFG).
The necessity for complexity reduction is, of course, not unique to business cycle analysis but is studied in many fields and in a number of ways. This broad interest in the reduction of problem dimensionality and in the appropriate combination of data and of theory caused the RWI Essen and the Statistical Department of the University of Dortmund in January 2002 to hold a workshop at the RWI Essen where the findings of this and similar projects were presented and discussed. The presentpublication collects revised versions of the papers presented at this workshop. Although the workshop took place some five years ago, these papers mark an importent juncture in the development of business cycle research.
(Table of content)
U. Heilemann / C. Weihs, Introduction - V. Zarnowitz, Phases and Stages of Recent U.S. Business Cycles - U. Heilemann / H. J. Münch, The U.S. Business Cycle and its Phases 1948-2000 - C. Weihs / U. Garczarek, Stability of Multivariate Representation of Business Cycles over Time - M. Amstad / B. Schips, Wachstumsfluktuationen, Zykluskonzepte und konjunkturelle Wendepunkte - B. Lucke / M. Knüppel, Unternehmensgrößenklassen im ifo-Konjunkturtest; eine Burns-Mitchell-Analyse - K. Morik / S. Rüping, An Inductive Logic Programming Approach to the Classification of Phases in Business Cycles - U. Garczarek / C. Weihs, Univariate Characterization of the German Business Cycle 1955-1994 - C. Becker / W. Theis, Combining Dimension Reduction and Fuzzy-clustering: An Application to Business Cycles - G. Guimaraes, Self-organizing Maps for Time Series Analysis - V. Zarnowitz, Modern Trends and Their Effects on International Business Cycles

最近チェックした商品