Die Entstehung der Knotentheorie : Kontexte und Konstruktionen einer modernen mathematischen Theorie

個数:

Die Entstehung der Knotentheorie : Kontexte und Konstruktionen einer modernen mathematischen Theorie

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 449 p.
  • 言語 GER
  • 商品コード 9783322802965
  • DDC分類 514

Full Description

Die Knotentheorie hat sich im letzten Jahrzehnt zu einem der aktivsten Forschungsgebiete in der Mathematik entwickelt. Eine Vielzahl neuer Ergebnisse wurde gefunden, die sich nicht nur in der Topologie, sondern auch in anderen Gebieten der Mathematik und sogar in anderen Naturwissenschaften wie der Physik und der Biologie fruchtbar einsetzen liessen. Diese erstaunliche Entwicklung hat eine beachtliche Zahl von Buchveroffentlichungen zur Knotentheorie zur Folge gehabt, wobei eine historische Darstellung bislang noch nicht vorliegt. Dieses Buch schliesst diese Lucke und spannt den Bogen von Gauss bis zur heutigen Knotentheorie. Allgemein verstandliche und mathematisch anspruchsvolle Abschnitte sind klar zu unterscheiden.

Contents

1 Einleitung.- 1.1 Vier Episoden.- 1.2 Themen einer Geschichte der Knotentheorie.- 1.3 Die Perspektive: Eine Geschichte des mathematischen Handelns.- 1.4 Eine kurze Übersicht.- Erster Teil: Mathematisierung.- 2 Der Praktische Umgang Mit Knoten und die Anfänge der Analysis Situs.- 3 Der Beitrag von Carl Friedrich Gauss Zur Mathematisierung der verkettungen und knoten.- 4 Ätherwirbel, Knoten und Atome.- 5 Ein Periodisches System der Knoten? Peter Guthrie Tait und die ersten knotentafeln.- 6 Sackgassen und Neue Wege: Knoten und Zöpfe in der Mathematik des Ausgehenden 19. Jahrhunderts.- Zweiter Teil: Knotentheorie in der mathematischen Moderne.- 7 Der Anbruch der Mathematischen Moderne und die Disziplinäre Schwelle der Topologie.- 8 Ein Anderer Weg in die Mathematische Moderne: Wilhelm Wirtinger, Poul Heegaard Und Heinrich Tietze.- 9 Poincarésche Räume, Knoten, Gruppen: Max Dehn.- 10 Berechenbare Invarianten und Elementare Begründung: Kurt Reidemeister.- 11 Überlagerungen, Homologie und Ein Knotenpolynom: James Waddell Alexander.- 12 Ein Erstes Paradigma? Knotentheorie Nach 1930.- A Taits Tafeln Alternierender Knoten.- B Verzeichnisse.- B1 Chronik.- B2 Chronologische Bibliographie bis 1945.- B3 Weitere Literatur.

最近チェックした商品