Machine Learning for Dynamic Software Analysis: Potentials and Limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers (Lecture Notes in Computer Science .11026) (1st ed. 2018. 2018. ix, 257 S. 38 SW-Abb. 235 mm)

個数:
電子版価格 ¥6,542
  • 電書あり

Machine Learning for Dynamic Software Analysis: Potentials and Limits : International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers (Lecture Notes in Computer Science .11026) (1st ed. 2018. 2018. ix, 257 S. 38 SW-Abb. 235 mm)

  • 提携先の海外書籍取次会社に在庫がございます。通常約3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783319965611

Full Description


Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits" held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches.

Contents

Introduction.- Testing and Learning.- Extensions of Automata Learning.- Integrative Approaches.