A Course in Functional Analysis and Measure Theory (Universitext)

個数:
電子版価格
¥12,152
  • 電子版あり

A Course in Functional Analysis and Measure Theory (Universitext)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 539 p.
  • 言語 ENG
  • 商品コード 9783319920030
  • DDC分類 515.42

Full Description

Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis.

Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory.

Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.

Contents

Introduction.- Chapter 1. Metric and topological spaces.- Chapter 2. Measure theory.- Chapter 3. Measurable functions.- Chapter 4. The Lebesgue integral.- Chapter 5. Linear spaces, linear functionals, and the Hahn-Banach theorem.- Chapter 6. Normed spaces.- Chapter 7. Absolute continuity of measures and functions. Connection between derivative and integral.- Chapter 8. The integral on C(K).- Chapter 9. Continuous linear functionals.- Chapter 10. Classical theorems on continuous operators.- Chapter 11. Elements of spectral theory of operators. Compact operators.- Chapter 12. Hilbert spaces.- Chapter 13. Functions of an operator.- Chapter 14. Operators in Lp.- Chapter 15. Fixed-point theorems and applications.- Chapter 16. Topological vector spaces.- Chapter 17. Elements of duality theory.- Chapter 18. The Krein-Milman theorem and applications.- References. Index.

最近チェックした商品