NEO 2016 : Results of the Numerical and Evolutionary Optimization Workshop NEO 2016 and the NEO Cities 2016 Workshop held on September 20-24, 2016 in Tlalnepantla, Mexico (Studies in Computational Intelligence)

個数:

NEO 2016 : Results of the Numerical and Evolutionary Optimization Workshop NEO 2016 and the NEO Cities 2016 Workshop held on September 20-24, 2016 in Tlalnepantla, Mexico (Studies in Computational Intelligence)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 282 p.
  • 言語 ENG
  • 商品コード 9783319877129
  • DDC分類 006.3

Full Description

This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO 2016) workshop held in September 2016 in Tlalnepantla, Mexico. The development of powerful search and optimization techniques is of great importance in today's world and requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others.

The goal of the NEO workshop series is to bring together experts from these and related fields to discuss, compare and merge their complementary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. In doing so, NEO promotes the development of new techniques that are applicable to a broader class of problems. Moreover, NEO fosters the understanding and adequate treatment of real-world problems particularly in emerging fields that affect all of us, such as healthcare, smart cities, big data, among many others. The extended papers presented in the book contribute to achieving this goal.  

Contents

Part I: Smart Cities.- Defensive Driving Strategy and Control for Autonomous Ground Vehicle in Mixed Traffic.- Augmenting the LSA Technique to Evaluate Ubicomp Environments.- Mixed Integer Programming Formulation for the Energy-Efficient Train Timetables Problem.- Distributing Computing in the Internet of Things: Cloud, Fog and Edge Computing Overview.- Part II: Search, Optimization and Hybrid Algorithms.- Integer Programming Models and Heuristics for Non-Crossing Euclidean 3-Matchings.- A Multi-Objective Robust Ellipse Fitting Algorithm.- Gradient-Based Multiobjective Optimization with Uncertainties.- A New Local Search Heuristic for the Multidimensional Assignment Problem.- Part III: Electronics and Embedded Systems.-  A Multi-Objective and Multidisciplinary Optimisation Algorithm for Microelectromechanical Systems.- Coefficients Estimation of MPM through LSE, ORLS and SLS for RF-PA Modeling and DPD.- Optimal Sizing of Amplifiers by Evolutionary Algorithms with Integer Encoding and gm/IDDesign Method.- Index.  

最近チェックした商品