Optimization and Its Applications in Control and Data Sciences : In Honor of Boris T. Polyak's 80th Birthday (Springer Optimization and Its Applications)

個数:

Optimization and Its Applications in Control and Data Sciences : In Honor of Boris T. Polyak's 80th Birthday (Springer Optimization and Its Applications)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 507 p.
  • 商品コード 9783319824901

Full Description

This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference "Optimization and Its Applications in Control and Data Science" dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015.

This book reflects developments in theory and applications rooted by Professor Polyak's fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable.

Contents

Introduction: Big, Small, and Optimal Steps of Boris Polyak (Boris Goldengorin).- A Convex Optimization Approach to Modeling of Stationary Periodic Time Series (Anders Lindquist and Giorgio Picci).- New two-phase proximal method of solving the solving the problem of equilibrium programming (Sergey I. Lyashko and Vladimir V. Semenov).- Minimax Control of  Positive Switching Systems with Markovian Jumps (Patrizio Colaneri,  José Geromel, Paolo Bolzern, Grace Deaecto).- A modified Polak-Ribière-Polyak conjugate gradient algorithm with sufficient descent and conjugacy properties for unconstrained optimization (Neculai Andrei).- Subgradient method with the transformation of space and Polyak's step (Petro Stetsyuk).- Invariance Conditions for Nonlinear Dynamical Systems (Y. Song, and T. Terlaky).- Nonparametric ellipsoidal approximation of compact sets of random points (S. I., Lyashko, V.V. Semenov D.A. Klyushin, M.V. Prysyazhna, M.P. Shlykov).- Algorithmic Principle of the Least Excessive Revenue for finding market equilibria (Yurii Nesterov, Vladimir Shikhman).- Matrix-Free Convex Optimization Modeling (Stephen Boyd and Steven Diamond).- Stochastic Optimization and Statistical Learning in Reproducing Kernel Hilbert Spaces the Stochastic Quasi-Gradient Methods (Vladimir I. Norkin).    

最近チェックした商品