Big and Complex Data Analysis : Methodologies and Applications (Contributions to Statistics)

個数:

Big and Complex Data Analysis : Methodologies and Applications (Contributions to Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 386 p.
  • 商品コード 9783319823874

Full Description

This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field.

The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data.

The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.

Contents

Preface.- Introduction.- Unsupervised Bump Hunting Using Principal Components.- Statistical Process Control Charts as a Tool for Analyzing Big Data.- Empirical Likelihood Test for High Dimensional Generalized Linear Models.- Identifying gene-environment interactions associated with prognosis using penalized quantile regression.- A Computationally Efficient Approach for Modeling Complex and Big Survival Data.- Regularization after marginal learning for ultra-high dimensional regression models.- Tests of concentration for low-dimensional and high-dimensional directional data.- Random Projections For Large-Scale Regression.- How Different are Estimated Genetic Networks of Cancer Subtypes?.- Analysis of correlated data with error-prone response under generalized linear mixed models.- High-Dimensional Classification for Brain Decoding.- Optimal shrinkage estimation in heteroscedastic hierarchical linear models.- Bias-reduced moment estimators of Population Spectral Distribution and their applications.- Testing in the Presence of Nuisance Parameters: Some Comments on Tests Post-Model-Selection and Random Critical Values.- A Mixture of Variance-Gamma Factor Analyzers.- Fast Community Detection in Complex Networks with a K-Depths Classifier.

最近チェックした商品