Navier-Stokes Equations on R3 x [0, T]

個数:

Navier-Stokes Equations on R3 x [0, T]

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 226 p.
  • 商品コード 9783319801629

Full Description

In this monograph, leading researchers in the world of
numerical analysis, partial differential equations, and hard computational
problems study the properties of solutions of the Navier-Stokes partial differential equations on (x, y, z,
t) ∈ ℝ3 x [0, T]. Initially converting the PDE to a
system of integral equations, the authors then describe spaces A of analytic functions that house
solutions of this equation, and show that these spaces of analytic functions
are dense in the spaces S of rapidly
decreasing and infinitely differentiable functions. This method benefits from
the following advantages:

The functions of S are
nearly always conceptual rather than explicit
Initial and boundary
conditions of solutions of PDE are usually drawn from the applied sciences,
and as such, they are nearly always piece-wise analytic, and in this case,
the solutions have the same properties
When methods of
approximation are applied to functions of A they converge at an exponential rate, whereas methods of
approximation applied to the functions of S converge only at a polynomial rate
Enables sharper bounds on
the solution enabling easier existence proofs, and a more accurate and
more efficient method of solution, including accurate error bounds

Following the proofs of denseness, the authors prove the
existence of a solution of the integral equations in the space of functions A ∩ ℝ3 x [0, T], and provide an explicit novel
algorithm based on Sinc approximation and Picard-like iteration for computing
the solution. Additionally, the authors include appendices that provide a
custom Mathematica program for computing solutions based on the explicit
algorithmic approximation procedure, and which supply explicit illustrations of
these computed solutions.

Contents

Preface.- Introduction, PDE, and IE Formulations.- Spaces of Analytic Functions.- Spaces of Solution of the N-S Equations.- Proof of Convergence of Iteration 1.6.3.- Numerical Methods for Solving N-S Equations.- Sinc Convolution Examples.- Implementation Notes.- Result Notes.

最近チェックした商品