Simulation-Driven Modeling and Optimization : ASDOM, Reykjavik, August 2014 (Springer Proceedings in Mathematics & Statistics)

個数:
  • ポイントキャンペーン

Simulation-Driven Modeling and Optimization : ASDOM, Reykjavik, August 2014 (Springer Proceedings in Mathematics & Statistics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 404 p.
  • 言語 ENG
  • 商品コード 9783319801599
  • DDC分類 003.3

Full Description

This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along withan array of the latest techniques to optimize the efficiency of the simulation-driven design process.

High-fidelity simulation models allow for accurate evaluations of the devices and systems, which is critical in the design process, especially to avoid costly prototyping stages. Despite this and other advantages, the use of simulation tools in the design process is quite challenging due to associated high computational cost. The steady increase of available computational resources does not always translate into the shortening of the design cycle because of the growing demand for higher accuracy and necessity to simulate larger and more complex systems. For this reason, automated simulation-driven design—while highly desirable—is difficult when using conventional numerical optimization routines which normally require a large number of system simulations, each one already expensive.

Contents

Numerical Aspects of Model Order Reduction for Gas Transportation Networks (Grundel, S., Hornung, N. & Roggendorf, S.).- Parameter Studies for Energy Networks with Examples from Gas Transport (Clees, T.).- Fast Multi-Objective Aerodynamic Optimization Using Space-Mapping-Corrected Multi-Fidelity Models and Kriging Interpolation (Leifsson, L. et al.).- Assessment of Inverse and Direct Methods for Airfoil and Wing Design (Zhang, M. & Rizzi, A.W.).- Performance Optimization of EBG-Based Common Mode Filters for Signal Integrity Applications (Orlandi, A. et al.).- Unattended Design of Wide-Band Planar Filters using a Two-Step Aggressive Space Mapping (ASM) Optimization Algorithm (Boria, V. et al.).- Two-Stage Gaussian Process Modeling of Microwave Structures for Design Optimization (Jacobs, J.P. & Koziel, S.).- Efficient Reconfigurable Microstrip Patch Antenna Modeling Exploiting Knowledge Based Artificial Neural Networks (Simsek, M. & Aoad, A.).- Expedited Simulation-DrivenMulti-Objective Design Optimization of Quasi-Isotropic Dielectric Resonator Antenna (Bekasiewicz, A. et al.).- Optimal Design of Photonic Crystal Nanostructures (Hassan, A.-K., Rafat, N. & Mohamed, A.S.A.).- Design Optimization of LNAs and Reflectarray Antennas using the Full-Wave Simulation based Artificial Intelligence Models with the Novel Metaheuristic Algorithms (Güneş, F., Demirel, S. & Nesil, S.).- Stochastic Decision-Making in Waste Management Using a Firefly Algorithm-Driven Simulation-Optimization Approach for Generating Alternatives (Yeomans, J.S., Imanirad, R. & Yang, X.-S.).- Linear and Nonlinear System Identification using Evolutionary Optimisation (Worden, K. et al.).- A Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Design Optimization Problems with Inequality Constraints (Liu, B., Zhang, Q. & Gielen, G.).- Sobol Indices for Dimension Adaptivity in Sparse Grids (Dwight, R.P., Desmedt, S.G.L., & Omrani, P.S.). 

最近チェックした商品