Data Management on New Hardware : 7th International Workshop on Accelerating Data Analysis and Data Management Systems Using Modern Processor and Storage Architectures, ADMS 2016 and 4th International Workshop on In-Memory Data Management and Analyti

個数:
電子版価格
¥9,072
  • 電子版あり

Data Management on New Hardware : 7th International Workshop on Accelerating Data Analysis and Data Management Systems Using Modern Processor and Storage Architectures, ADMS 2016 and 4th International Workshop on In-Memory Data Management and Analyti

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 167 p.
  • 言語 ENG
  • 商品コード 9783319561103
  • DDC分類 005.74

Full Description

This book contains selected papers from the 7th International Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor and Storage Architectures, ADMS 2016, and the 4th International Workshop on In-Memory Data Management and Analytics, IMDM 2016, held in New Dehli, India, in September 2016. The joint Workshops were co-located with VLDB 2016. The 9 papers presented were carefully reviewed and selected from 18 submissions. They investigate opportunities in accelerating analytics/data management systems and workloads (including traditional OLTP, data warehousing/OLAP, ETL streaming/real-time, business analytics, and XML/RDF processing) running memory-only environments, using processors (e.g. commodity and specialized multi-core, GPUs and FPGAs, storage systems (e.g. storage-class memories like SSDs and phase-change memory), and hybrid programming models like CUDA, OpenCL, and Open ACC. The papers also explore the interplay between overall system design, core algorithms, query optimization strategies, programming approaches, performance modeling and evaluation, from the perspective of data management applications.

Contents

Accelerating analytics/data management systems.- Workloads (including traditional OLTP, data warehousing/OLAP, ETL streaming/real-time, business analytics, and XML/RDF processing).- Running memory-only environments, using processors (e.g. commodity and specialized multi-core, GPUs and FPGAs, storage systems (e.g. storage-class memories like SSDs and phase-change memory).- Hybrid programming models like CUDA, OpenCL, and Open ACC.- Interplay between overall system design, core algorithms, query optimization strategies, programming approaches, performance modeling and evaluation, from the perspective of data management applications.

最近チェックした商品