Granular-Relational Data Mining : How to Mine Relational Data in the Paradigm of Granular Computing? (Studies in Computational Intelligence)

個数:
電子版価格
¥18,015
  • 電子版あり

Granular-Relational Data Mining : How to Mine Relational Data in the Paradigm of Granular Computing? (Studies in Computational Intelligence)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 123 p.
  • 言語 ENG
  • 商品コード 9783319527505

Full Description

This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case.
Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing!
This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining.

Contents

Preface.- Chapter 1: Introduction.- Part I: Generalized Related Set Based Approach.- Chapter 2: Information System for Relational Data.- Chapter 3: Properties of Granular-Relational Data Mining Framework.- Chapter 4: Association Discovery and Classification Rule Mining.- Chapter 5: Rough-Granular Computing.- Part II: Description Language Based Approach.- Chapter 6: Compound Information Systems.- Chapter 7: From Granular-Data Mining Framework to its Relational Version.- Chapter 8: Relation-Based Granules.- Chapter 9: Compound Approximation Spaces.- Conclusions.- References.- Index.

最近チェックした商品