Foundations of Computer Vision : Computational Geometry, Visual Image Structures and Object Shape Detection (Intelligent Systems Reference Library)

個数:
電子版価格
¥19,027
  • 電子版あり

Foundations of Computer Vision : Computational Geometry, Visual Image Structures and Object Shape Detection (Intelligent Systems Reference Library)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 431 p.
  • 言語 ENG
  • 商品コード 9783319524818

Full Description

This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classification of image regions. Algorithms provide a practical, step-by-step means of viewing image structures.

The implementations of CV methods in Matlab  and Mathematica, classification of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of CV make the book an invaluable resource for advanced undergraduate and first year graduate students in Engineering, Computer Science or Applied Mathematics.

It offers insights into the design of CV experiments, inclusion of image processing methods in CV projects, as well as the reconstruction and interpretation of recorded natural scenes.

Contents

Basics Leading to Machine Vision.- Working with Pixels.- Visualising Pixel Intensity Distributions.- Linear Filtering.- Edges, Lines, Corners, Gaussian kernel and Voronoï Meshes.- Delaunay Mesh Segmentation.- Video Processing. An Introduction to Real-Time and Offline Video Analysis.- Lowe Keypoints, Maximal Nucleus Clusters, Contours and Shapes.- Postscript. Where Do Shapes fit into the Computer Vision Landscape?.

最近チェックした商品