The Manual of Strategic Economic Decision Making : Using Bayesian Belief Networks to Solve Complex Problems

個数:
電子版価格
¥15,012
  • 電子版あり

The Manual of Strategic Economic Decision Making : Using Bayesian Belief Networks to Solve Complex Problems

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 260 p.
  • 言語 ENG
  • 商品コード 9783319484136
  • DDC分類 519.542

Full Description

This book is an extension of the author's first book and serves as a guide and manual on how to specify and compute 2-, 3-, and 4-Event Bayesian Belief Networks (BBN). It walks the learner through the steps of fitting and solving fifty BBN numerically, using mathematical proof. The author wrote this book primarily for inexperienced learners as well as professionals, while maintaining a proof-based academic rigor.

The author's first book on this topic, a primer introducing learners to the basic complexities and nuances associated with learning Bayes' theorem and inverse probability for the first time, was meant for non-statisticians unfamiliar with the theorem—as is this book. This new book expands upon that approach and is meant to be a prescriptive guide for building BBN and executive decision-making for students and professionals; intended so that decision-makers can invest their time and start using this inductive reasoning principle in their decision-making processes.It highlights the utility of an algorithm that served as the basis for the first book, and includes fifty 2-, 3-, and 4-event BBN of numerous variants.

Contents

1. Introduction.- 1.1 Bayes' Theorem: An Introduction.- 1.2 Protocol.- 1.3 Data.- 1.4 Statistical Properties of Bayes' Theorem.- 1.5 Base Matrices.- 1.5.1 Event A Node.- 2. Base Matrices.- 2.1 Event A Node.- 2.1.1 Event A Node-Prior Counts.- 2.1.2 Module A-Prior Probabilities.- 2.2 Event B.- 2.2.1 Event B Node-Likelihood Counts.- 2.2.2 Module B Node.- 2.2.3 Event B Node-Counts.- 2.2.4 Event B Node-Likelihood Probabilities.- 2.3 Event C Node.- 2.3.1 Event C Node-Counts.- 2.3.2 Event C Node-Likelihood Probabilities.- 2.3.3 Event C Node-Counts.- 2.3.4 Event C Node-Likelihood Probabilities.- 2.3.5 Event C Node-Counts.- 2.3.6 Event C Node-Likelihood Probabilities.- 2.3.7 Event C Node-Counts.- 2.3.8 Event C Node-Probabilities.- 2.4 Event D Node.- 2.4.1 Event D Node-Counts.- 2.4.2 Event D Node-Likelihood Probabilities.- 2.5 Event D Node-Counts.- 2.5.1 Event D Node-Likelihood Probabilities.- 2.5.2 Event D Node-Counts.- 2.5.3 Event D Node-Likelihood Probabilities.- 2.5.4 Event D Node-Counts.- 2.5.5 Event D Node-Likelihood Probabilities.- 2.5.6 Event D Node-Counts.- 2.5.7 Event D Node-Likelihood Probabilities.- 2.5.8 Event D Node-Counts.- 2.5.9 Event D Node-Likelihood Probabilities.- 2.5.10 Event D Node-Counts.- 2.5.11 Event D Node-Likelihood Probabilities.- 3. 2-Event 1-Path BBN.- 3.1 [A] [B].- 3.1.1 2-Event BBN Proof.- 3.1.2 BBN Specification.- 4.3-Event 2-Path BBNs.- 4.1 [AB|AC].- 4.1.1 Proof.- 4.1.2 BBN Specification.- 4.2 [AC|BC].- 4.2.1 Proof.- 4.2.2 BBN Specification.- 4.3 [AB|BC].- 4.3.1 Proof.- 4.3.2 BBN Specification.- 5. 3-Event 3-Path BBNs.- 5.1 3-Paths-[AB|AC|BC].- 5.1.1 Proof.- 5.1.2 BBN Probabilities.

最近チェックした商品