A Combinatorial Perspective on Quantum Field Theory (Springerbriefs in Mathematical Physics)

個数:

A Combinatorial Perspective on Quantum Field Theory (Springerbriefs in Mathematical Physics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 120 p.
  • 商品コード 9783319475509

Full Description

This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author's biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory.  Among the outcomes are both physical insights and interesting mathematics.

The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras.  The remainder is broken into two parts.  The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical.  The second part looks at Feynman graphs and their periods.

The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.

Contents

Part I Preliminaries.- Introduction.- Quantum field theory set up.- Combinatorial classes and rooted trees.- The Connes-Kreimer Hopf algebra.- Feynman graphs.- Part II Dyson-Schwinger equations.- Introduction to Dyson-Schwinger equations.- Sub-Hopf algebras from Dyson-Schwinger equations.- Tree factorial and leading log toys.- Chord diagram expansions.- Differential equations and the (next-to)m leading log expansion.- Part III Feynman periods.- Feynman integrals and Feynman periods.- Period preserving graph symmetries.- An invariant with these symmetries.- Weight.- The c2 invariant.- Combinatorial aspects of some integration algorithms.- Index.

最近チェックした商品