Polynomial Theory of Error Correcting Codes (Signals and Communication Technology)

個数:

Polynomial Theory of Error Correcting Codes (Signals and Communication Technology)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 732 p.
  • 商品コード 9783319378701

Full Description

The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC) codes, the features of which are justified from the structural properties of the component codes. Design procedures for regular LDPC codes are proposed, supported by the presented theory. Quasi-cyclic LDPC codes, in block or convolutional form, represent one of the most original contributions of the book. The use of more than 100 examples allows the reader gradually to gain an understanding of the theory, and the provision of a list of more than 150 definitions, indexed at the end of the book, permits rapid location of sought information.

Contents

Generator matrix approach to linear block codes.- Wide-sense time-invariant block codes in their generator matrix.- Generator matrix approach to s.s. time-invariant convolutional codes.- Wide-sense time-invariant convolutional codes in their generator matrix.- Parity check matrix approach to linear block codes.- Wide-sense time-invariant block codes in their parity check matrix.- Strict-sense time-invariant convolutional codes in their parity check matrix.- Wide-sense time-invariant convolutional codes in their parity check matrix.- Turbo codes.- Low density parity check codes.- Binomial product generator LDPC block codes.- LDPC convolutional codes.- Appendix A. Matrix algebra in a binary finite field.- Appendix B. Polynomial representation of binary sequences.- Appendix C. Electronic circuits for multiplication or division in polynomial representation of binary sequences.- Appendix D. Survey on the main performance of error correcting codes.

最近チェックした商品