Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications (Operator Theory: Advances and Applications)

個数:

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications (Operator Theory: Advances and Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 412 p.
  • 言語 ENG
  • 商品コード 9783319375670
  • DDC分類 515.352

Full Description

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail.

Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader's background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.

Contents

Preface.- Part I: Operator Pencils.- 1.Quadratic Operator Pencils.- 2.Applications of Quadratic Operator Pencils.- 3.Operator Pencils with Essential Spectrum.- 4.Operator Pencils with a Gyroscopic Term.- Part II: Hermite-Biehler Functions.- 5.Generalized Hermite-Biehler Functions.- 6.Applications of Shifted Hermite-Biehler Functions.- Part III: Direct and Inverse Problems.- 7.Eigenvalue Asymptotics.- 8.Inverse Problems.- Part IV: Background Material.- 9.Spectral Dependence on a Parameter.- 10.Sobolev Spaces and Differential Operators.- 11.Analytic and Meromorphic Functions.- 12.Inverse Sturm-Liouville Problems.- Bibliography.- Index.- Index of Notation.

最近チェックした商品