Seventeenth-Century Indivisibles Revisited (Science Networks. Historical Studies)

個数:

Seventeenth-Century Indivisibles Revisited (Science Networks. Historical Studies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 499 p.
  • 言語 ENG
  • 商品コード 9783319374956
  • DDC分類 510.9

Full Description

The tremendous success of indivisibles methods in geometry in the seventeenth century, responds to a vast project: installation of infinity in mathematics. The pathways by the authors are very diverse, as are the characterizations of indivisibles, but there are significant factors of unity between the various doctrines of indivisible; the permanence of the language used by all authors is the strongest sign.

These efforts do not lead to the stabilization of a mathematical theory (with principles or axioms, theorems respecting these first statements, followed by applications to a set of geometric situations), one must nevertheless admire the magnitude of the results obtained by these methods and highlights the rich relationships between them and integral calculus.

The present book aims to be exhaustive since it analyzes the works of all major inventors of methods of indivisibles during the seventeenth century, from Kepler to Leibniz. It takes into account the rich existingliterature usually devoted to a single author. This book results from the joint work of a team of specialists able to browse through this entire important episode in the history of mathematics and to comment it.

The list of authors involved in indivisibles' field is probably sufficient to realize the richness of this attempt; one meets Kepler, Cavalieri, Galileo, Torricelli, Gregoire de Saint Vincent, Descartes, Roberval, Pascal, Tacquet, Lalouvère, Guldin, Barrow, Mengoli, Wallis, Leibniz, Newton.

Contents

Introduction.- 1 From Aristotle to the Classical Age : the Debate around Indivibilism.- 2 Cavalieri's Indivisibles.- 3 Kepler, Cavalieri, Guldin.- 4 Indivisibles in the Work of Galileo.- 5 Torricelli's indivisibles.- 6 The method of indivisibles that Gregory of Saint Vincent could have used for his own quadrature of Hyperbola.- 7 Descartes and the use of indivisibles.- 8 Roberval's indivisibles.- 9 Pascal's indivisibles.- 10 Two jesuits against indivibles, Lalouvère and Tacquet.- 11 Isaac Barrow's indivisibles.- 12 The role of indivisibles in Mengoli's quadratures.- 13 Wallis on indivisibles.- 14 Leibniz's rigorous foundations of the method of indivisibles.- 15 Newton on indivisibles.-16 An epistemological route in the historiography on indivisibles.- 17 Archimedes and indivisibles.- 18 Indivisibles and Latitude of Forms.- 19 How to explain the use of the term indivisibles as late as 1700 for the discovery of multiple rainbows?​

最近チェックした商品