Geometric Control Theory and Sub-Riemannian Geometry (Springer Indam Series)

個数:

Geometric Control Theory and Sub-Riemannian Geometry (Springer Indam Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9783319350257
  • DDC分類 514.74

Full Description

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Contents

1 A. A. Agrachev - Some open problems.- 2 D. Barilari, A. Lerario - Geometry of Maslov cycles.- 3 Y. Baryshnikov, B. Shapiro - How to Run a Centipede: a Topological Perspective.- 4 B. Bonnard, O. Cots, L. Jassionnesse - Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces.- 5 J-B. Caillau, C. Royer - On the injectivity and nonfocal domains of the ellipsoid of revolution.- 6 P. Cannarsa, R. Guglielmi - Null controllability in large time for the parabolic Grushin operator with singular potential.- 7 Y. Chitour, M. Godoy Molina, P. Kokkonen - The rolling problem: overview and challenges.- 8 A. A. Davydov, A. S. Platov - Optimal stationary exploitation of size-structured population with intra-specific competition.- 9 B. Doubrov, I. Zelenko - On geometry of affine control systems with one input.- 10 B. Franchi, V. Penso, R. Serapioni - Remarks on Lipschitz domains in Carnot groups.- 11 R. V. Gamkrelidze - Differential-geometric and invariance properties of the equations of Maximum Principle (MP).- 12 N. Garofalo - Curvature-dimension inequalities and Li-Yau inequalities in sub-Riemannian spaces.- 13 R. Ghezzi, F. Jean - Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds.- 14 V. Jurdjevic - The Delauney-Dubins Problem.- 15 M. Karmanova, S. Vodopyanov - On Local Approximation Theorem on Equiregular Carnot-Carathéodory spaces.- 16 C. Li - On curvature-type invariants for natural mechanical systems on sub-Riemannian structures associated with a principle G-bundle.- 17 I. Markina, S. Wojtowytsch - On the Alexandrov Topology of sub-Lorentzian Manifolds.- 18 R. Monti - The regularity problem for sub-Riemannian geodesics.- 19 L. Poggiolini, G. Stefani - A case study in strong optimality and structural stability of bang-singular extremals.- 20 A. Shirikyan - Approximate controllability of the viscous Burgers equation on the real line.- 21 M. Zhitomirskii - Homogeneous affine line fields and affine linefields in Lie algebras.

最近チェックした商品