Uncertainty in Biology : A Computational Modeling Approach (Studies in Mechanobiology, Tissue Engineering and Biomaterials)

個数:

Uncertainty in Biology : A Computational Modeling Approach (Studies in Mechanobiology, Tissue Engineering and Biomaterials)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 478 p.
  • 言語 ENG
  • 商品コード 9783319343723

Full Description

Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.

Contents

An Introduction to Uncertainty in the Development of Computational Models of Biological Processes.- Reverse Engineering under Uncertainty.- Probabilistic Computational Causal Discovery for Systems Biology.- Macroscopic Simulation of Individual-Based Stochastic Models for Biological Processes.- The Experimental Side of Parameter Estimation.- Statistical Data Analysis and Modeling.- Optimization in Biology: Parameter Estimation and the Associated Optimization Problem.- Interval Methods.- Model Extension and Model Selection.- Bayesian Model Selection Methods and their Application to Biological ODE Systems.- Sloppiness and the Geometry of Parameter Space.- Modeling and Model Simplification to Facilitate Biological Insights and Predictions.- Sensitivity Analysis by Design of Experiments.- Waves in Spatially-Disordered Neural Fields: a Case Study in Uncertainty Quantification.- X In-silico Models of Trabecular Bone: a Sensitivity Analysis Perspective.- Neuroswarm: a Methodology to Explore the Constraints that Function Imposes on Simulation Parameters in Large-Scale Networks of Biological Neurons.- Prediction Uncertainty Estimation Despite Unidentifiability: an Overview of Recent Developments.- Computational Modeling Under Uncertainty: Challenges and Opportunities.

最近チェックした商品