Proper Generalized Decompositions : An Introduction to Computer Implementation with Matlab (Springerbriefs in Applied Sciences and Technology)

個数:
電子版価格
¥9,512
  • 電子版あり

Proper Generalized Decompositions : An Introduction to Computer Implementation with Matlab (Springerbriefs in Applied Sciences and Technology)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 96 p.
  • 言語 ENG
  • 商品コード 9783319299938

Full Description

This book is intended to help researchers overcome the entrance barrier to Proper Generalized Decomposition (PGD), by providing a valuable tool to begin the programming task. Detailed Matlab Codes are included for every chapter in the book, in which the theory previously described is translated into practice. Examples include parametric problems, non-linear model order reduction and real-time simulation, among others.
Proper Generalized Decomposition (PGD) is a method for numerical simulation in many fields of applied science and engineering. As a generalization of Proper Orthogonal Decomposition or Principal Component Analysis to an arbitrary number of dimensions, PGD is able to provide the analyst with very accurate solutions for problems defined in high dimensional spaces, parametric problems and even real-time simulation.

  

Contents

Introduction.- 2 To begin with: PGD for Poisson problems.- 2.1 Introduction.- 2.2 The Poisson problem.- 2.3 Matrix structure of the problem.- 2.4 Matlab code for the Poisson problem.- 3 Parametric problems.- 3.1 A particularly challenging problem: a moving load as a parameter.- 3.2 The problem under the PGD formalism.- 3.2.1 Computation of S(s) assuming R(x) is known.- 3.2.2 Computation of R(x) assuming S(s) is known.- 3.3 Matrix structure of the problem.- 3.4 Matlab code for the influence line problem.- 4 PGD for non-linear problems.- 4.1 Hyperelasticity.- 4.2 Matrix structure of the problem.- 4.2.1 Matrix form of the term T2.- 4.2.2 Matrix form of the term T4.- 4.2.3 Matrix form of the term T6.- 4.2.4 Matrix form for the term T8.- 4.2.5 Matrix form of the term T9.- 4.2.6 Matrix form of the term T10.- 4.2.7 Final comments.- 4.3 Matlab code.- 5 PGD for dynamical problems.- 5.1 Taking initial conditions as parameters.- 5.2 Developing the weak form of the problem.- 5.3 Matrix form of the problem.- 5.3.1 Time integration of the equations of motion.- 5.3.2 Computing a reduced-order basis for the field of initial conditions.- 5.3.3 Projection of the equations onto a reduced, parametric basis.- 5.4 Matlab code.- References.- Index.   

最近チェックした商品