Link Prediction in Social Networks : Role of Power Law Distribution (Springerbriefs in Computer Science)

個数:

Link Prediction in Social Networks : Role of Power Law Distribution (Springerbriefs in Computer Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 67 p.
  • 言語 ENG
  • 商品コード 9783319289212
  • DDC分類 003.72

Full Description

This
work presents link prediction similarity measures for social networks that exploit
the degree distribution of the networks. In the context of link prediction in
dense networks, the text proposes similarity measures based on Markov inequality
degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold
for a possible link. Also presented are similarity measures based on cliques
(CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number
of cliques. Additionally, a locally adaptive (LA) similarity measure is
proposed that assigns different weights to common nodes based on the degree
distribution of the local neighborhood and the degree distribution of the
network. In the context of link prediction in dense networks, the text
introduces a novel two-phase framework that adds edges to the sparse graph to
forma boost graph.

Contents

Introduction.- Link Prediction Using Degree Thresholding.- Locally Adaptive Link Prediction.- Two Phase Framework for Link Prediction.- Applications of Link Prediction.- Conclusion.

最近チェックした商品