Multivariate Time Series with Linear State Space Structure

個数:

Multivariate Time Series with Linear State Space Structure

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 541 p.
  • 商品コード 9783319285986

Full Description

This book presents a comprehensive study of multivariate time series with linear state space structure. The emphasis is put on both the clarity of the theoretical concepts and on efficient algorithms for implementing the theory.  In particular, it investigates the relationship between VARMA and state space models, including canonical forms. It also highlights the relationship between Wiener-Kolmogorov and Kalman filtering both with an infinite and a finite sample. The strength of the book also lies in the numerous algorithms included for state space models that take advantage of the recursive nature of the models. Many of these algorithms can be made robust, fast, reliable and efficient. The book is accompanied by a MATLAB package called SSMMATLAB and a webpage presenting implemented algorithms with many examples and case studies. Though it lays a solid theoretical foundation, the book also focuses on practical application, and includes exercises in each chapter. It is intendedfor researchers and students working with linear state space models, and who are familiar with linear algebra and possess some knowledge of statistics.

Contents

Preface.- Computer Software.- Orthogonal Projection.- Linear Models.- Stationarity and Linear Time Series Models.- The State Space Model.- Time Invariant State Space Models.- Time Invariant State Space Models With Inputs.- Wiener-Kolmogorov Filtering and Smoothing.- SSMMATLAB.- Bibliography.- Author Index.- Subject Index.

最近チェックした商品