Exploring the Strategy Space of Negotiating Agents : A Framework for Bidding, Learning and Accepting in Automated Negotiation (Springer Theses)

個数:

Exploring the Strategy Space of Negotiating Agents : A Framework for Bidding, Learning and Accepting in Automated Negotiation (Springer Theses)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 276 p.
  • 商品コード 9783319282428

Full Description

This book reports on an outstanding thesis that has significantly
advanced the state-of-the-art in the area of automated negotiation. It gives
new practical and theoretical insights into the design and evaluation of
automated negotiators. It describes an innovative negotiating agent framework
that enables systematic exploration of the space of possible negotiation
strategies by recombining different agent components. Using this framework, new
and effective ways are formulated for an agent to learn, bid, and accept during
a negotiation. The findings have been evaluated in four annual instantiations
of the International Automated Negotiating Agents Competition (ANAC), the
results of which are also outlined here. The book also describes several
methodologies for evaluating and comparing negotiation strategies and
components, with a special emphasis on performance and accuracy measures.

Contents

Introduction.- Background.- A Component-based Architecture to Explore the Space of Negotiation Strategies.- Effective Acceptance Conditions.- Accepting Optimally with Incomplete Information.- Measuring the Performance of Online Opponent Models.- Predicting the Performance of Opponent Models.- A Quantitative Concession-Based Classification Method of Bidding Strategies.- Optimal Non-adaptive Concession Strategies.- Putting the Pieces Together.- Conclusion.