情報抽出のための自然言語処理の先端的応用<br>Advanced Applications of Natural Language Processing for Performing Information Extraction (Springerbriefs in Speech Technology) (2015)

個数:
電子版価格
¥10,007
  • 電子版あり

情報抽出のための自然言語処理の先端的応用
Advanced Applications of Natural Language Processing for Performing Information Extraction (Springerbriefs in Speech Technology) (2015)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 75 p.
  • 言語 ENG
  • 商品コード 9783319155623

Full Description

This book explains how can be created information extraction (IE) applications that are able to tap the vast amount of relevant information available in natural language sources: Internet pages, official documents such as laws and regulations, books and newspapers, and social web. Readers are introduced to the problem of IE and its current challenges and limitations, supported with examples. The book discusses the need to fill the gap between documents, data, and people, and provides a broad overview of the technology supporting IE. The authors present a generic architecture for developing systems that are able to learn how to extract relevant information from natural language documents, and illustrate how to implement working systems using state-of-the-art and freely available software tools. The book also discusses concrete applications illustrating IE uses.

 

·         Provides an overview of state-of-the-art technology in information extraction (IE), discussing achievements and limitations for the software developer and providing references for specialized literature in the area

·         Presents a comprehensive list of freely available, high quality software for several subtasks of IE and for several natural languages

·         Describes a generic architecture that can learn how to extract information for a given application domain

Contents

Introduction.- Data Gathering, Preparation and Enrichment.- Identifying things, relations, and semantizing data.- Extracting Relevant Information Using a Given Semantic.- Application Examples.- Conclusion.

最近チェックした商品