Bayesian Methods for the Physical Sciences : Learning from Examples in Astronomy and Physics (Springer Series in Astrostatistics)

個数:
電子版価格
¥24,021
  • 電子版あり

Bayesian Methods for the Physical Sciences : Learning from Examples in Astronomy and Physics (Springer Series in Astrostatistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 238 p.
  • 言語 ENG
  • 商品コード 9783319152868

Full Description

Statistical literacy is critical for the modern researcher in Physics and Astronomy. This book empowers researchers in these disciplines by providing the tools they will need to analyze their own data. Chapters in this book provide a statistical base from which to approach new problems, including numerical advice and a profusion of examples. The examples are engaging analyses of real-world problems taken from modern astronomical research. The examples are intended to be starting points for readers as they learn to approach their own data and research questions. Acknowledging that scientific progress now hinges on the availability of data and the possibility to improve previous analyses, data and code are distributed throughout the book. The JAGS symbolic language used throughout the book makes it easy to perform Bayesian analysis and is particularly valuable as readers may use it in a myriad of scenarios through slight modifications.

This book is comprehensive, well written, and will surely be regarded as a standard text in both astrostatistics and physical statistics.

Joseph M. Hilbe, President, International Astrostatistics Association, Professor Emeritus, University of Hawaii, and Adjunct Professor of Statistics, Arizona State University

Contents

​Recipes.- A Bit of Theory.- A Bit of Numerical Computation.- Single Parameter Models.- The Prior.- Multi-parameters Models.- Non-random Data Collection.- Fitting Regression Models.- Model Checking and Sensitivity Analysis.- Bayesian vs Simple Methods.- Appendix: Probability Distributions.- Appendix: The third axiom of probability, conditional probability, independence and conditional independence.

最近チェックした商品