Boundary Value Problems for Second-Order Finite Difference Equations and Systems (De Gruyter Studies in Mathematics 91) (2. Aufl. 2025. X, 182 S. 240 mm)

個数:

Boundary Value Problems for Second-Order Finite Difference Equations and Systems (De Gruyter Studies in Mathematics 91) (2. Aufl. 2025. X, 182 S. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783112224823

Full Description

The mathematical modeling of many problems from economics, computer science, engineering, biological neural networks and others leads to the consideration of nonlinear difference equations. Many authors have studied such problems by using various methods, such as: the fixed point theory, the fixed point index theory, variational methods, the critical point theory, different transformations, extensions of Perron's second theorem, diversified criteria for the stability of solutions, and so on. 

This monograph studies the existence of positive solutions for some classes of second-order nonlinear finite difference equations, and systems of second-order nonlinear finite difference equations, subject to various multi-point boundary conditions. In the case of systems, these boundary conditions may be uncoupled or coupled. It also investigates a class of nonlinear 휈th order Atıcı-Eloe fractional difference equations supplemented with varied boundary conditions, and some systems of generalized second-order difference equations in Hilbert spaces with multi-point boundary conditions. The book draws together our results that have been obtained in the last years. Chapter 1 deals with the existence of positive solutions for two second-order finite difference equations which contain a linear term and a sign-changing nonlinearity, with or without parameters, subject to multi-point boundary conditions. Chapter 2 is focused on the existence and multiplicity of positive solutions for two systems of nonlinear second-order difference equations with uncoupled multi-point boundary conditions. The nonlinearities from the systems are nonnegative functions and satisfy some assumptions containing concave functions, or they are sign-changing functions. Chapter 3 studies the existence and nonexistence of positive solutions for two systems of nonlinear second-order difference equations supplemented with coupled multi-point boundary conditions, with positive parameters in the systems or in the boundary conditions. The nonlinearities of the systems are nonnegative functions and satisfy various assumptions. Chapter 4 is concerned with the existence and multiplicity of positive solutions for two systems of nonlinear second-order difference equations subject to coupled multi-point boundary conditions, without parameters. The nonlinearities of the systems are nonnegative functions and satisfy various assumptions. Chapter 5 is devoted to the existence of positive solutions for a system of nonlinear second-order difference equations with parameters and sign-changing nonlinearities, supplemented with multi-point coupled boundary conditions. Chapter 6 deals with the existence of nontrivial solutions, nonnegative solutions and positive solutions for a class of nonlinear 휈th order Atıcı-Eloe fractional difference equations with left focal boundary conditions or Dirichlet boundary conditions. In each chapter, various examples are presented which support the main results.

Finally, the new Chapter 7 investigates the existence and uniqueness of solutions for some nonlinear systems of generalized second-order difference equations in Hilbert spaces, subject to multi-point boundary conditions containing monotone operators. Some applications to initial-boundary value problems for nonlinear first-order differential systems with monotone operators are also addressed. The methods used in the proof of our theorems include results from the fixed point theory, the fixed point index theory, the theory of monotone operators and nonlinear evolution equations of monotone type in Hilbert spaces.

This monograph can serve as a good resource for the mathematical and scientific researchers, and for the graduate students in mathematics and science interested in the existence of solutions and positive solutions for finite difference equations and systems.

最近チェックした商品