Multidimensional Signal Processing : Fast transform, Sparse Representation, Low Rank Analysis (Advances in Electrical and Electronic Engineering) (2027. X, 240 S. 80 b/w ill. 240 mm)

個数:
  • 予約

Multidimensional Signal Processing : Fast transform, Sparse Representation, Low Rank Analysis (Advances in Electrical and Electronic Engineering) (2027. X, 240 S. 80 b/w ill. 240 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783110528015

Full Description

This book illustrates utilization of fast transform, sparse representation and low rank analysis as tool in multidimensional signal processing and focuses on discrete cosine transform, optimization of double tree wavelet transform in coding and noise reduction, self-return compression perception of image signal. With orignal research results, the book is an essential reference for electrical engineering researchers and engineers.

Contents

Table of Content:
Chapter 1 Review on multidimensional signal processing
1.1 Introduction
1.2 Multi-dimensional signal: fast transformation
1.3 Multi-dimensional signal: sparse representation
1.4 Multi-dimensional signal: low rank analysis
1.5 Summary
Chapter 2 Multi-dimensional discrete cosine transform matrix and fast decomposition
2.1 Introduction
2.2 Dct transformation and matrix decomposition
2.3 M ddct and m d ratio
2.4 M d ratio dct fast algorithm
2.5 Computational complexity comparison
2.6 Summary
Chapter 3 Multidimensional discrete wavelet transform: vlsi architecture
3.1 Introduction
3.2 Multi-dimensional dwt transformation framework
3.3 Comparison and evaluation
3.4 Summary
Chapter 4 Multi-dimensional signal: sparse representation theory and application
4.1 Introduction
4.2 Compression perception
4.3 Application of compression perception
4.4 Summary
Chapter 5 Discrete wavelet transform based on image/video coding
5.1 Introduction
5.2 Dual-tree discrete wavelet transform
5.3 Image coding based on ddwt
5.4 Adaptive DWTWT
5.5 Image/Video Encoding Based on addwp
5.6 Summary
Chapter 6 Low-order analysis of multi-dimensional signal: theory and application
6.1 Introduction
6.2 Matrix rank
6.3 Matrix low rank sparse decomposition
6.4 Applications and examples
6.5 Summary
Chapter 7 Sparse structure visual information perception
7.1 Introduction
7.2 Logarithms and heuristic perception algorithm
7.3 Log sum approximation in the data analysis application
7.4 Log sum approximation in stereo reconstruction application
7.5 Summary
7.6 Appendix
Chapter 8 Dynamic reconstruction of the dynamic topography
8.1 Introduction
8.2 Research updates
8.3 3D reconstruction of dynamic scene based on 3D motion estimation
8.4 Experimental results and analysis
8.5 Summary
Chapter 9 Low-rank decomposition of multidimensional signal and adaptive reconfiguration
9.1 Foreword
9.2 Low-rank accumulate matrix construction and low-rank decomposition of multidimensional signal 9.3 Applications of low rank decomposition in compressive perception image reconfiguration
9.4 Application of low rank decomposition in super resolution
9.5 Summary
References

最近チェックした商品