Orthogonal Polynomials (De Gruyter Studies in Mathematics 63) (2027. X, 500 S. 240 mm)

個数:
  • 予約

Orthogonal Polynomials (De Gruyter Studies in Mathematics 63) (2027. X, 500 S. 240 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783110313857

Full Description

The origins of the theory of orthogonal polynomials go back at least to the 18th century when they were studied in terms of continued fractions. The theory is now large and complex: a crossroad of several important domains of analysis such as analytic function theory, analytic theory of differential equations, Fourier and harmonic analysis, spectral theory of Sturm-Liouville operators, and approximation and interpolation, among others.

Contents

Proposed content

1. Elementary introduction

1.1. Orthogonal polynomials on R.

1.2. Pade Approximants.

1.3. Pade Approximants for moment series. Markov theorem.

1.4. Asymptotic moment series. Stieltjes theorem.

1.5. Continued fractions.

1.6. Moment problems.

2. Classical orthogonal polynomials

2.1. Classical weights and classical orthogonal polynomials.

2.2. Darboux formula. Generating functions.

2.3. Differential equations.

2.4. Electrostatic interpretation of zeros of classical OP.

2.5. Lioulille - Green asymptotics.

2.6. Asymptotics for classical orthogonal polynomials.

3. Polynomials orthogonal on the unit circle

3.1. Formal properties. Connection with OP on an interval.

3.2. H2-space in a disc. Boundary values. Szego function.

3.3. Szego asymptotic formula.

3.4. Steklov problem.

3.5. Ratio asymptotis.

3.6. Corollaries for OP on the interval.

3.7. Orthogonal Polynomials on more generals sets in plane.

4. Equilibrium measure and exponential weights on R

4.1. Logarithmic potential and logarithmic energy.

4.2. Equilibrium measure in the external field on R.

4.3. Zero disribution of extremal polynomials.

4.4. Logarithmic asymptotics for OP on real line and the rate of convergence in Stieltjes theorem.

4.5. Discrete approximation of a measure on R.

4.6. Strong asymptotics for Freud-type OP.

5. Discrete orthigonal polynomials

5.1. Constrained equilibrium measure.

5.2. Bounds for polynomials with a unit discrete norm.

5.3. Zero distribution for discrete orthogonal polynomials.

5.4. Some results on strong asymptotics for discrete OP.

6. Polynomials orthogonal on several intervals

6.1. Algebraic Riemann surfaces.

6.2. Green functions and harmonic measures (Abel integrals).

6.3. Abel theorem and Jacobi inversion problem.

6.4. Akhiezer-Widom asymptotic formula. Outline of the proof.

6.5. Extremal problems in multiconneted domains.

6.6. Faber polynomials and discretization of equilibrium measure - two ways to complete the proof af asymptotic formula.

6.7. Hermite-Pade polynomials for Markov-type functions.

6.8. From hyperelliptic to general Riemann surfaces.

6.9. Some results and conjectures on asymptotics.

7. Complex orthogonal polynomials

7.1. Pade approximants for functions with branch points.

7.2. Quadratic differentials.

7.3. Existence theorem for minimal capacity cuts.

7.4. Stahl's theorem.

7.5. Existence of S-curves in harmonic external fields.

7.6. Zero distribution of complex orthogonal polynomials.

7.7. Hermit-Pade approximants for functions with branch points.

7.8. Vector-equilibrium problems and Riemann surfaces.

7.9. Asymptotics for Hermit-Pade polynomials.

8. Random matrices and determinantial processes

最近チェックした商品