Young Measures and Compactness in Measure Spaces (2012. XII, 339 S. 240 mm)

個数:

Young Measures and Compactness in Measure Spaces (2012. XII, 339 S. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 商品コード 9783110276404

Full Description

In recent years, technological progress created a great need for complex mathematical models. Many practical problems can be formulated using optimization theory and they hope to obtain an optimal solution. In most cases, such optimal solution can not be found. So, non-convex optimization problems (arising, e.g., in variational calculus, optimal control, nonlinear evolutions equations) may not possess a classical minimizer because the minimizing sequences have typically rapid oscillations. This behavior requires a relaxation of notion of solution for such problems; often we can obtain such a relaxation by means of Young measures.

This monograph is a self-contained book which gathers all theoretical aspects related to the defining of Young measures (measurability, disintegration, stable convergence, compactness), a book which is also a useful tool for those interested in theoretical foundations of the measure theory. It provides a complete set of classical and recent compactness results in measure and function spaces.

The book is organized in three chapters: The first chapter covers background material on measure theory in abstract frame. In the second chapter the measure theory on topological spaces is presented. Compactness results from the first two chapters are used to study Young measures in the third chapter. All results are accompanied by full demonstrations and for many of these results different proofs are given. All statements are fully justified and proved.

Contents

Preface

1 Weak Compactness in Measure Spaces
1.1 Measure spaces
1.2 Radon-Nikodym theorem. The dual of L1
1.3 Convergences in L1(l) and ca(A)
1.4 Weak compactness in ca(A) and L1(l)
1.5 The bidual of L1(l)
1.6 Extensions of Dunford-Pettis' theorem

2 Bounded Measures on Topological Spaces
2.1 Regular measures
2.2 Polish spaces. Suslin spaces
2.3 Narrow topology
2.4 Compactness results
2.5 Metrics on the space (Rca+(BT ), T)
2.6 Wiener measure

3 Young Measures
3.1 Preliminaries
3.2 Definitions. Examples
3.3 The stable topology
3.4 The subspace M(S) Y(S)
3.5 Compactness
3.6 Biting lemma
3.7 Product of Young measures
3.8 Jordan finite tight sets
3.9 Strong compactness in Lp(μ,E)

References
Index