Narrow Operators on Function Spaces and Vector Lattices (De Gruyter Studies in Mathematics 45) (2012. XIII, 319 S. 10 schw.-w. Abb. 240 mm)

個数:
  • ポイントキャンペーン

Narrow Operators on Function Spaces and Vector Lattices (De Gruyter Studies in Mathematics 45) (2012. XIII, 319 S. 10 schw.-w. Abb. 240 mm)

  • ウェブストア価格 ¥43,165(本体¥39,241)
  • DE GRUYTER(2012発売)
  • 外貨定価 EUR 164.95
  • クリスマスポイント2倍キャンペーン(~12/25)
  • ポイント 784pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 300 p.
  • 商品コード 9783110263039

Full Description

Most classes of operators that are not isomorphic embeddings are characterized by some kind of a "smallness" condition. Narrow operators are those operators defined on function spaces that are "small" at {-1,0,1}-valued functions, e.g. compact operators are narrow. The original motivation to consider such operators came from theory of embeddings of Banach spaces, but since then they were also applied to the study of the Daugavet property and to other geometrical problems of functional analysis. The question of when a sum of two narrow operators is narrow, has led to deep developments of the theory of narrow operators, including an extension of the notion to vector lattices and investigations of connections to regular operators.

Narrow operators were a subject of numerous investigations during the last 30 years. This monograph provides a comprehensive presentation putting them in context of modern theory. It gives an in depth systematic exposition of concepts related to and influenced by narrow operators, starting from basic results and building up to most recent developments. The authors include a complete bibliography and many attractive open problems.

Contents

Chapter 1. Preliminaries
Chapter 2. Each small operator is narrow
Chapter 3. Applications to the geometry of Lp spaces for 0 < p < 1 5
Chapter 4. A very non-compact narrow operator
Chapter 5. Some deep results on narrow operators
Chapter 6. Weak embeddings of L1
Chapter 7. For what spaces X every operator T 2 L(Lp;X) is narrow?
Chapter 8. Ideal properties of narrow operators
Chapter 9. Daugavet type properties of Lorentz spaces with
Chapter 10. Narrow operators on vector lattices
Chapter 11. Some generalizations of narrow operators
Bibliography

最近チェックした商品