Laurent Series and their Padé Approximations (Operator Theory: Advances and Applications .27) (2013. xi, 276 S. XI, 276 p. 254 mm)

個数:

Laurent Series and their Padé Approximations (Operator Theory: Advances and Applications .27) (2013. xi, 276 S. XI, 276 p. 254 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 276 p.
  • 言語 ENG
  • 商品コード 9783034899888

Full Description

The Pade approximation problem is, roughly speaking, the local approximation of analytic or meromorphic functions by rational ones. It is known to be important to solve a large scale of problems in numerical analysis, linear system theory, stochastics and other fields. There exists a vast literature on the classical Pade problem. However, these papers mostly treat the problem for functions analytic at 0 or, in a purely algebraic sense, they treat the approximation of formal power series. For certain problems however, the Pade approximation problem for formal Laurent series, rather than for formal power series seems to be a more natural basis. In this monograph, the problem of Laurent-Pade approximation is central. In this problem a ratio of two Laurent polynomials in sought which approximates the two directions of the Laurent series simultaneously. As a side result the two-point Pade approximation problem can be solved. In that case, two series are approximated, one is a power series in z and the other is a power series in z-l. So we can approximate two, not necessarily different functions one at zero and the other at infinity.

Contents

2. Introduction.- 2.1 Classical Padé approximation.- 2.2 Toeplitz and Hankel systems.- 2.3 Continued fractions.- 2.4 Orthogonal polynomials.- 2.5 Rhombus algorithms and convergence.- 2.6 Block structure.- 2.7 Laurent-Padé approximants.- 2.8 The projection method.- 2.9 Applications.- 2.10 Outline.- 3. Moebius transforms, continued fractions and Padé approximants.- 3.1 Moebius transforms.- 3.2 Flow graphs.- 3.3 Continued fractions (CF).- 3.4 Formal series.- 3.5 Padé approximants.- 4. Two algorithms.- 4.1 Algorithm 1.- 4.2 Algorithm 2.- 5. All kinds of Padé Approximants.- 5.1 Padé approximants.- 5.2 Laurent-Padé approximants.- 5.3 Two-point Padé approximants.- 6. Continued fractions.- 6.1 General observations.- 6.2 Some special cases.- 7. Moebius transforms.- 7.1 General observations.- 7.2 Some special cases.- 8. Rhombus algorithms.- 8.1 The ab parameters (sawtooth path).- 8.2. The FG parameters (row path).- 8.3. A staircase path.- 8.4 ?? paramaters (diagonal path).- 8.5 Some dual results.- 8.6 Relation with classical algorithms.- 9. Biorthogonal polynomials, quadrature and reproducing kernels.- 9.1 Biorthogonal polynomials.- 9.2 Interpolatory quadrature methods.- 9.3 Reproducing kernels.- 9.4 Other orthogonality relations.- 10. Determinant expressions and matrix interpretations.- 10.1 Determinant expressions.- 10.2 Matrix interpretations.- 11. Symmetry Properties.- 11.1 Symmetry for F(z) and $$\hat F$$(z) = F(1/z).- 11.2 Symmetry for F(z) and G(z) = 1/F(z).- 12. Block structures.- 12.1 Pade forms, Laurent-Pade forms and two-point Pade forms.- 12.2 The T-table.- 12.3 The Pade, Laurent-Pade, and two-point Pade tables.- 13. Meromorphic functions and asymptotic behaviour.- 13.1 The function F(z).- 13.2 Asymptotics for finite Toeplitz determinants.- 13.3 Asymptoticsfor infinite Toeplitz determinants.- 13.4 Consequences for the T-table.- 14. Montessus de Ballore theorem for Laurent-Padé approximants.- 14.1 Semi infinite Laurent series.- 14.2 Bi-infinite Laurent series.- 15. Determination of poles.- 15.1 Rutishauser polynomials of type 1 and type 2.- 15.2 Rutishauser polynomials of type 3.- 15.3 Rutishauser polynomials and Laurent series.- 15.4 Convergence of parameters.- 16. Determination of zeros.- 16.1 Dual Rutishauser polynomials and semi-infinite series.- 16.2 From semi-infinite to bi-infinite series.- 16.3 Convergence of parameters.- 17. Convergence in a row of the Laurent-Padé table.- 17.1 Toeplitz operators and the projection method.- 17.2 Convergence of the denominator.- 17.3 Convergence of the numerator.- 18. The positive definite case and applications.- 18.1 Function classes.- 18.2 Connection with the previous results.- 18.3 Stochastic processes and systems.- 18.4 Lossless inverse scattering and transmission lines.- 18.5 Laurent-Padé approximation and ARMA-filtering.- 18.6 Concluding remarks.- 19. Examples.- 19.1 Example 1.- 19.2 Example 2.- 19.3 Example 3.- References.- List of symbols.

最近チェックした商品