Topics in Control Theory (DMV Seminar Vol.22) (Softcover reprint of the original 1st ed. 1993. 2012. vi, 168 S. VI, 1)

個数:

Topics in Control Theory (DMV Seminar Vol.22) (Softcover reprint of the original 1st ed. 1993. 2012. vi, 168 S. VI, 1)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 176 p.
  • 言語 ENG
  • 商品コード 9783034896832

Full Description

One of the key concerns in modern control theory is the design of steering strategies. The implementation of such strategies is done by a regulator. Presented here is a self-contained introduction to the mathematical background of this type of regulator design. The topics selected address the matter of greatest interest to the control community, at present, namely, when the design objective is the reduction of the influence of exogeneous disturbances upon the output of the system. In a first scenario the disturbance signal is regarded as a deterministic time series with known dynamics but unknown parameters. The design objective is then the asymptotic disturbance compensation. In a second scenario, no information about the disturbance signal is available apart from some bounds. Here, in an H-approach, control strategies are worked out which will prove efficient for all such disturbances. The intention of this book is to present ideas and methods on such a level that the beginning graduate student will be able to follow current research. New results are included, especially for nonlinear control systems, and as a service to the reader, an extensive appendix presents topics from linear algebra, invariant manifolds and calculus of variations, information which is hardly to be found in standard textbooks. Contents: Introduction • The problem of output regulation • Introduction • Problem statement • Output regulation via full information • Output regulation via full error feedback • A particular case • Well-posedness and robustness • The construction of a robust regulator • Disturbance attenuation via H-methods • Introduction • Problem statement • A characterization of the L2-gain of a linear system • Disturbance attenuation via full information • Disturbance attenuation via measured feedback • Full information regulators • Problem statement • Time-dependent control strategies • Examples • Time-independent control strategies• The local case • Nonlinear observers • Problem statement • Time-dependent observers • Error feedback regulators • Examples • Nonlinear H-techniques • Introduction • Construction of the saddle-point • The local scenario • Disturbance attenuation via linearization • Matrix equations • Linear matrix equations • Algebraic Riccati equations • Invariant manifolds • Existence theorem • Outflowing manifolds • Asymptotic phase • Convergence for T ¹ • A special case • Dichotomies and Lyapunov functions • Hamilton-Jacobi-Bellman-Isaacs equation • Introduction • Method of characteristics • The equation of Isaacs • The Hamiltonian version of Isaacs' equation • Bibliography

Contents

1 The problem of output regulation.- 1.1 Introduction.- 1.2 Problem statement.- 1.3 Output regulation via full information.- 1.4 Output regulation via error feedback.- 1.5 A particular case.- 1.6 Well-posedness and robustness.- 1.7 The construction of a robust regulator.- 2 Disturbance attenuation via H?-methods.- 2.1 Introduction.- 2.2 Problem statement.- 2.3 A characterization of the L2-gain of a linear system.- 2.4 Disturbance attenuation via full information.- 2.5 Disturbance attenuation via measured feedback.- 3 Full information regulators.- 3.1 Problem statement.- 3.2 Time-dependent control strategies.- 3.3 Examples.- 3.4 Time-independent control strategies.- 3.5 The local case.- 4 Nonlinear observers.- 4.1 Problem statement.- 4.2 Time-dependent observers.- 4.3 Error feedback regulators.- 4.4 Examples.- 5 Nonlinear H?-techniques.- 5.1 Introduction.- 5.2 Construction of the saddle-point.- 5.3 The local scenario.- 5.4 Disturbance attenuation via linearization.- A Matrix equations.- A.l Linear matrix equations.- A.2 Algebraic Riccati equations.- B Invariant manifolds.- B.l Existence theorem.- B.2 Outflowing manifolds.- B.3 Asymptotic phase.- B.5 A special case.- B.6 Dichotomies and Lyapunov functions.- C Hamilton-Jacobi-Bellman-Isaacs equation.- C.l Introduction.- C.2 Method of characteristics.- C.3 The equation of Isaacs.- C.4 The Hamiltonian version of Isaacs' equation.

最近チェックした商品