Stochastic Spectral Theory for Selfadjoint Feller Operators : A Functional Integration Approach (Probability and Its Applications)

個数:

Stochastic Spectral Theory for Selfadjoint Feller Operators : A Functional Integration Approach (Probability and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 463 p.
  • 言語 ENG
  • 商品コード 9783034895774
  • DDC分類 515.7246

Full Description

A beautiful interplay between probability theory (Markov processes, martingale theory) on the one hand and operator and spectral theory on the other yields a uniform treatment of several kinds of Hamiltonians such as the Laplace operator, relativistic Hamiltonian, Laplace-Beltrami operator, and generators of Ornstein-Uhlenbeck processes. For such operators regular and singular perturbations of order zero and their spectral properties are investigated.
A complete treatment of the Feynman-Kac formula is given. The theory is applied to such topics as compactness or trace class properties of differences of Feynman-Kac semigroups, preservation of absolutely continuous and/or essential spectra and completeness of scattering systems.
The unified approach provides a new viewpoint of and a deeper insight into the subject. The book is aimed at advanced students and researchers in mathematical physics and mathematics with an interest in quantum physics, scattering theory, heat equation, operator theory, probability theory and spectral theory.

Contents

1 Basic Assumptions of Stochastic Spectral Analysis:Free Feller Operators.- A Introduction.- B Assumptions and Free Feller Generators.- C Examples.- D Heat kernels.- E Summary of Schrödinger semigroup theory.- 2 Perturbations of Free Feller Operators.- The framework of stochastic spectral analysis.- A Regular perturbations.- B Integral kernels, martingales, pinned measures.- C Singular perturbations.- 3 Proof of Continuity and Symmetry of Feynman-Kac Kernels.- 4 Resolvent and Semigroup Differences for Feller Operators: Operator Norms.- A Regular perturbations.- B Singular perturbations.- 5 Hilbert-Schmidt Properties of Resolvent and Semigroup Differences.- A Regular perturbations.- B Singular perturbations.- 6 Trace Class Properties of Semigroup Differences.- A General trace class criteria.- B Regular perturbations.- C Singular perturbations.- 7 Convergence of Resolvent Differences.- 8 Spectral Properties of Self-adjoint Feller Operators.- A Qualitative spectral results.- B Quantitative estimates for regular potentials.- C Quantitative estimates for singular potentials in terms of the weighted Laplace transform of the occupation time (for large coupling parameters).- Appendix A Spectral Theory.- Appendix B Semigroup Theory.- Appendix C Markov Processes, Martingales and Stopping Times.- Appendix D Dirichlet Kernels, Harmonic Measures, Capacities.- Appendix E Dini's Lemma, Scheffé's Theorem, Monotone Class Theorem.- References.- Index of Symbols.

最近チェックした商品