Quaternion and Clifford Fourier Transforms and Wavelets (Trends in Mathematics) (2013)

個数:

Quaternion and Clifford Fourier Transforms and Wavelets (Trends in Mathematics) (2013)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 338 p.
  • 言語 ENG
  • 商品コード 9783034807777
  • DDC分類 006.37

Full Description

Quaternion and Clifford Fourier and wavelet transformations generalize the classical theory to higher dimensions and are becoming increasingly important in diverse areas of mathematics, physics, computer science and engineering. This edited volume presents the state of the art in these hypercomplex transformations. The Clifford algebras unify Hamilton's quaternions with Grassmann algebra. A Clifford algebra is a complete algebra of a vector space and all its subspaces including the measurement of volumes and dihedral angles between any pair of subspaces. Quaternion and Clifford algebras permit the systematic generalization of many known concepts.
 
This book provides comprehensive insights into current developments and applications including their performance and evaluation. Mathematically, it indicates where further investigation is required. For instance, attention is drawn to the matrix isomorphisms for hypercomplex algebras, which will help readers to see that software implementations are within our grasp.
 
It also contributes to a growing unification of ideas and notation across the expanding field of hypercomplex transforms and wavelets. The first chapter provides a historical background and an overview of the relevant literature, and shows how the contributions that follow relate to each other and to prior work. The book will be a valuable resource for graduate students as well as for scientists and engineers.

Contents

Preface.- History of Quaternion and Clifford-Fourier Transforms and Wavelets.- Part I: Quaternions.- 1 Quaternion Fourier Transform: Re-tooling Image and Signal Processing Analysis.- 2 The Orthogonal 2D Planes Split of Quaternions and Steerable Quaternion Fourier Transformations.- 3 Quaternionic Spectral Analysis of Non-Stationary Improper Complex Signals.- 4 Quaternionic Local Phase for Low-level Image Processing Using Atomic Functions.- 5 Bochner's Theorems in the Framework of Quaternion Analysis.- 6 Bochner-Minlos Theorem and Quaternion Fourier Transform.- Part II: Clifford Algebra.- 7 Square Roots of -1 in Real Clifford Algebras.- 8 A General Geometric Fourier Transform.- 9 Clifford-Fourier Transform and Spinor Representation of Images.- 10 Analytic Video (2D+t) Signals Using Clifford-Fourier Transforms in Multiquaternion Grassmann-Hamilton-Clifford Algebras.- 11 Generalized Analytic Signals in Image Processing: Comparison, Theory and Applications.- 12 Color Extension of Monogenic Wavelets with Geometric Algebra: Application to Color Image Denoising.- 13 Seeing the Invisible and Maxwell's Equations.- 14 A Generalized Windowed Fourier Transform in Real Clifford Algebra Cl_{0,n}.- 15 The Balian-Low theorem for the Windowed Clifford-Fourier Transform.- 16 Sparse Representation of Signals in Hardy Space.​- Index.

最近チェックした商品