Optimization Techniques for Deep Learning : Improving Performance and Efficiency (Springer Optimization and Its Applications)

個数:
  • 予約
  • ポイントキャンペーン

Optimization Techniques for Deep Learning : Improving Performance and Efficiency (Springer Optimization and Its Applications)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032207029

Full Description

This book offers a comprehensive guide to optimization techniques in deep learning, a transformative branch of artificial intelligence that has revolutionized fields from computer vision to healthcare. By bridging the gap between theoretical concepts and practical applications, it equips readers with the tools needed to harness the full potential of deep neural networks.

The chapters cover a wide range of optimization methods, beginning with the fundamentals of neural networks and key concepts of deep learning. Readers will explore critical topics such as gradient descent, stochastic optimization, and advanced algorithms, while also addressing the inherent challenges of optimization. The book delves into practical aspects, offering insights into how to make training deep models more efficient and stable. Emerging trends and future perspectives are also presented, making this work a must-read for anyone looking to stay at the forefront of the field.

This book is an invaluable resource for researchers and practitioners seeking practical solutions for optimizing neural networks. Students will find a clear path to understanding the principles and building theoretical knowledge, while industry professionals will gain insights into the latest techniques and trends. Whether you're a seasoned expert or new to the field, this book is essential for anyone interested in deep learning optimization.

Contents

Neural Networks and Deep Learning.- Optimization Techniques for Neural Networks.- Convolutional Neural Networks (CNNs).- Long Short-Term Memory Networks (LSTMs).- Recurrent Neural Networks (RNNs).- Generative Adversarial Networks (GANs).- Radial Basis Function Networks (RBFNs).- Multilayer Perceptrons (MLPs).- Self-Organizing Maps (SOMs).- Deep Belief Networks (DBNs).

最近チェックした商品