C.I.M.E. Foundation Subseries : PDEs, Control and Deep Learning : Cetraro, Italy 2024 (Lecture Notes in Mathematics)

個数:
  • 予約

C.I.M.E. Foundation Subseries : PDEs, Control and Deep Learning : Cetraro, Italy 2024 (Lecture Notes in Mathematics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783032187420

Description

This volume includes lectures presented at the CIME School on PDEs, Control and Deep Learning , held in Cetraro (Italy) from July 22 to 26, 2024. It provides a comprehensive and up-to-date view of the diverse and rapidly evolving field of nonlinear partial differential equations (PDEs), with an emphasis on modeling, analysis, control, and deep learning aspects. 

The theory of PDEs interacts closely with almost all areas of physics and many branches of mathematics. As explicit solutions of PDEs are rarely available (except in the simplest cases), numerical approximations play a central role in their study. Machine learning, particularly through artificial neural networks, introduces powerful methods for function approximation through layered structures of interconnected units (neurons) that combine linear transformations and nonlinear activations. Deep learning (the use of neural networks with many hidden layers) has proven to be remarkably e ective in a wide range of applications. At the same time, recent advances in PDEs and control theory are beginning to inform machine learning, providing new theoretical perspectives.

The book will be a valuable resource for PhD students and researchers seeking to deepen their understanding of partial differential equations, control, and their connections to modern machine learning. 

Chapter 1. Introduction.- Chapter 2. Control Problems for Propagation Fronts and Moving Sets.- Chapter 3. PDEs in Data Science: From Graph Learning to Adversarial Training.- Chapter 4. The Bernoulli Free Boundary Problem.- Chapter 5. Scientific Machine Learning for differential problems: Integrating physics-based and data-driven approaches.

Giuseppe Coclite is a full professor at the Politecnico di Bari in Italy. His research interests include nonlinear PDEs and control theory. 

Enrique Zuazua is a full professor at the Friedrich-Alexander-Universität Erlangen-Nürnberg in Germany. His research interests include nonlinear PDEs and control theory. 

Alberto Bressan is a full professor at the Penn State University in the United States. His research interests include nonlinear PDEs and control theory. 

Leon Bungert is an associate professor at the University of Würzburg in Germany. His research interests include machine learning and applied analysis.

Alfio Quarteroni is an emeritus professor at the Politecnico di Milano in Italy and EPFL in Switzerland. His research interests include numerical analysis and deep learning. 

Guido De Philippis is a full professor at the Universita di Padova in Italy. His research interests include the calculus of variations, transport theory and geometric measure theory. 


最近チェックした商品