Machine Learning Systems : The Role of Hardware Design for Dependable Computing

個数:
  • 予約
  • ポイントキャンペーン

Machine Learning Systems : The Role of Hardware Design for Dependable Computing

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783032179470

Full Description

This book addresses the technological contributions and developments of advanced hardware for Machine Learning (ML) computing systems. The authors discuss state-of-the-art progress in this area (and related topics) as well as reporting on their application to diverse fields. This is achieved by chapters covering the entire spectrum of research activities to include design and applications, with a focus on high performance and dependable operation. The entire hardware stack (from circuit, to architecture, up to the system level) is discussed in detail.  The book will cover innovative material as well as tutorials, reviews and surveys of current theoretical/experimental results, design methodologies and applications over a wide spectrum of scope for an enlarged readership, so to include engineers as well as scientists.

Discusses a wide range of topics for Machine Learning-based computer systems;
Covers design and application for the entire hardware stack, with a focus on high performance and dependability;
Includes innovative material, as well as tutorials, reviews and surveys of current theoretical/experimental results.

 

 

 

 

Contents

High performance machine learning accelerators on fpga.- Floating point arithmetic in deep neural networks evaluation and implementation of conventional and emerging formats with mixed precision strategies.- High performance computing architectures for ml.- High performance domain specific computing architectures for machine learning.- Edge ai training accelerator design.- Accelerating machine learning with unconventional architectures.- Mram based energy efficient computing architectures for machine learning accelerators.- Energy efficient data aware computation in computing in memory architecture.- Stochastic computing applied to morphological neural networks.- Approximate computing in machine learning - More than you bargained for.- Edge computing meets giant ai innovations in large language model efficiency.- Chiplet based accelerator design for scalable training of transformer based generative adversarial networks.- Energy consumption in generative ai insights from large language models inference.- Towards sustainable and responsible gen ai an investigation on energy efficient computing and cost effective complementary components.- Low power machine learning realization techniques on biomedical wearable devices.- Application of algorithm and hardware co design in the hardware accelerator of visual slam front end.- Application of Aagorithm and hardware co design in the hardware accelerator of visual slam back end.- Hardware efficient designs for spiking neural networks.- Understanding neural network fault tolerance from the analog hardware to the gpu.- On the use of ml techniques in safety critical systems.- Fault injection and tolerance techniques for deep learning models deployed on sram based fpgas.- Dependability evaluation of parameters and variables in large language models llms to soft errors on memory.- Lightweight algorithm based fault tolerance abft for resilient ml systems.- Using error correction code schemes in dependable machine learning systems.- Analog error correcting codes for dependable in memory computing of neural networks.- Perturbation based error tolerance for large scale networks.- Quantization aided cost efficient reliability of cnn accelerators for edge ai.- Trustworthy ai at the cloud.- Exploring hardware driven privacy techniques for trustworthy machine learning.- Machine learning and hardware security the role of ai for hardware in the security era.- Machine learning systems for high performance and dependability the role of fpga design.

最近チェックした商品