Triply Periodic Minimal Surface Structures for Laminar Flow Control (Mechanics and Adaptronics)

個数:
  • 予約

Triply Periodic Minimal Surface Structures for Laminar Flow Control (Mechanics and Adaptronics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9783032138439

Full Description

Laminar flow control systems promise substantial emission reductions by minimising the viscous drag of transport aircraft. While many studies have proven the working principle of boundary layer suction in wind tunnel and flight tests, no system effectively improving the energy efficiency of state-of-the-art transport aircraft is available. This doctoral thesis develops an additively manufacturable suction panel for laminar flow control to reduce the technology's complexity into one integral component decoupled from the aircraft's main structure. The benefit of additive manufacturing hereby is the integration of complex aerodynamic requirements, such as surface curvature and suction rate control, into the suction panel's design while being independent of the mechanical wing design requirements.

Micro-perforations of the same size as the resolution of state-of-the-art industrial 3D printers are a challenge for additive manufacturing. This thesis investigates promising perforation geometries for various additive manufacturing technologies. Identifying their porosity and pressure drop characteristics enables the selection of suitable perforation geometries and additive manufacturing technologies for producing micro-perforated surfaces for laminar flow control applications. Stereolithography-printed micro-perforated suction surfaces featuring quadratic-truncated-cone perforations can be shown to delay laminar-turbulent transition in flat plate wind tunnel tests effectively.

Under aerodynamic loading, the micro-perforated suction skin requires a dense support structure, simultaneously enabling air discharge. However, due to their insufficient internal airflow capability, traditional core structures for sandwich panels, such as Honeycombs or foams, cannot be used. In contrast, triply periodic minimal surfaces promise significant internal airflow combined with dense mechanical support. This thesis investigates triply periodic minimal surfaces' design and mechanical performance and presents a prediction model depending on their relative density. A wing-sizing study employs this model to demonstrate the suction panel's minimal impact on the wing mass.

Ultimately, this doctoral thesis presents a design for an additively manufacturable suction panel that complies with the mechanical and aerodynamic requirements of laminar flow control and aircraft wing design. Successful suction panel component tests result in a design methodology that enables effective transition delay and integrated passive suction rate control. The additively manufactured suction panel reduces complexity and expands the applications of laminar flow control technology. Consequently, the suction panel concept developed in this thesis promises to be a key technology for a new generation of transport aircraft with significantly increased energy efficiency.

Contents

Introduction.- A Suction Panel Concept for Additive Manufacturing.- Additively Manufactured Porous Sheets.- Design of Triply Periodic Minimal Surface Structures.- Mechanics of Triply Periodic Minimal Surface Structures.- Aerodynamics of Triply Periodic Minimal Surface Structures.- Mechanical Interfaces for Triply Periodic Minimal Surface Structures.- The Feasibility of Additively Manufactured Suction Panels.- Conclusion.

最近チェックした商品